Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36233333

ABSTRACT

Biological nitrogen fixation (BNF) is a key process for the N input in agriculture, with outstanding economic and environmental benefits from the replacement of chemical fertilizers. However, not all symbioses are equally effective in fixing N2, and a major example relies on the high contribution associated with the soybean (Glycine max), contrasting with the low rates reported with the common bean (Phaseolus vulgaris) crop worldwide. Understanding these differences represents a major challenge that can help to design strategies to increase the contribution of BNF, and next-generation sequencing (NGS) analyses of the nodule and root microbiomes may bring new insights to explain differential symbiotic performances. In this study, three treatments evaluated in non-sterile soil conditions were investigated in both legumes: (i) non-inoculated control; (ii) inoculated with host-compatible rhizobia; and (iii) co-inoculated with host-compatible rhizobia and Azospirillum brasilense. In the more efficient and specific symbiosis with soybean, Bradyrhizobium presented a high abundance in nodules, with further increases with inoculation. Contrarily, the abundance of the main Rhizobium symbiont was lower in common bean nodules and did not increase with inoculation, which may explain the often-reported lack of response of this legume to inoculation with elite strains. Co-inoculation with Azospirillum decreased the abundance of the host-compatible rhizobia in nodules, probably because of competitiveness among the species at the rhizosphere, but increased in root microbiomes. The results showed that several other bacteria compose the nodule microbiomes of both legumes, including nitrogen-fixing, growth-promoters, and biocontrol agents, whose contribution to plant growth deserves further investigation. Several genera of bacteria were detected in root microbiomes, and this microbial community might contribute to plant growth through a variety of microbial processes. However, massive inoculation with elite strains should be better investigated, as it may affect the root microbiome, verified by both relative abundance and diversity indices, that might impact the contribution of microbial processes to plant growth.


Subject(s)
Microbiota , Phaseolus , Rhizobium , Fertilizers , Nitrogen , Nitrogen Fixation , Phaseolus/microbiology , Plant Roots/microbiology , Rhizobium/physiology , Root Nodules, Plant/microbiology , Soil , Glycine max/microbiology , Symbiosis
2.
BMC Plant Biol ; 19(1): 215, 2019 May 23.
Article in English | MEDLINE | ID: mdl-31122198

ABSTRACT

BACKGROUND: Sugarcane is a tropical crop that can accumulate high concentration of sucrose in the stem as a storage carbohydrate. For that reason, sugarcane accounts for approximately 75% of all the sugar produced in the world and has become the main sugar source to produce first-generation bioethanol in Brazil. Daily rhythms cause plants to adapt and coordinate their metabolism to achieve maximum photosynthesis and carbohydrate production throughout the day. Circadian rhythms arise from the interaction of an internal oscillator and external stimuli, whereas diel rhythms occur in response to a light-dark cycle. Diel signalling contributes to synchronizing circadian rhythms to photoperiods, and levels of carbohydrates oscillate in a diel fashion. Under regular photoperiods, they are synthesized during the daytime and consumed throughout the night as an energy reserve. However, short days can induce higher rates of synthesis during daytime and lower rates of consumption in the dark. Cell wall carbohydrates are also diurnally regulated, and it has been shown that celluloses, hemicelluloses and pectin are deposited/degraded at different times of the day. To assess the diel carbohydrate profile in young sugarcane plants, we measured soluble sugars and cell wall components along a time course in plants subjected either to a regular day or short day. RESULTS: Short-day influenced sucrose synthesis and cell wall components. In short-day a 44% increase in sucrose concentration was detected in the dark, but was stable during the day. Cellulose, hemicellulose and pectin also fluctuate within a 24 h interval when subjected to a short day. A 38% increase in leaf sheath cellulose was observed from the middle of the day to the first hour of the night. Leaf sheath pectin and hemicellulose also increased from the day to the night, while it decreased in leaves. CONCLUSIONS: The presented data show diurnal patterns of soluble sugar metabolism together with temporal regulation of cell wall metabolism for a short day, suggesting that diel signalling has a role in how sugarcane manages sugar accumulation and partitioning. Understanding cell wall synthesis/degradation dynamics may help to improve the yield of sugarcane.


Subject(s)
Cell Wall/metabolism , Circadian Rhythm/physiology , Photoperiod , Saccharum/physiology , Sugars/metabolism , Pectins/metabolism , Polysaccharides/metabolism
3.
J Agric Food Chem ; 64(7): 1635-47, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26809209

ABSTRACT

Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.


Subject(s)
Coffea/chemistry , Plant Proteins/metabolism , Seeds/growth & development , Coffea/growth & development , Coffea/metabolism , Coffee/chemistry , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry , Plant Proteins/chemistry , Proteomics , Seeds/chemistry , Seeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...