Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(5): 352, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773063

ABSTRACT

Within the thymus, thymic epithelial cells (TECs) create dedicated microenvironments for T cell development and selection. Considering that TECs are sensitive to distinct pathophysiological conditions, uncovering the molecular elements that coordinate their thymopoietic role has important fundamental and clinical implications. Particularly, medullary thymic epithelial cells (mTECs) play a crucial role in central tolerance. Our previous studies, along with others, suggest that mTECs depend on molecular factors linked to genome-protecting pathways, but the precise mechanisms underlying their function remain unknown. These observations led us to examine the role of Foxo3, as it is expressed in TECs and involved in DNA damage response. Our findings show that mice with TEC-specific deletion of Foxo3 (Foxo3cKO) displayed a disrupted mTEC compartment, with a more profound impact on the numbers of CCL21+ and thymic tuft mTEClo subsets. At the molecular level, Foxo3 controls distinct functional modules in the transcriptome of cTECs and mTECs under normal conditions, which includes the regulation of ribosomal biogenesis and DNA damage response, respectively. These changes in the TEC compartment resulted in a reduced total thymocyte cellularity and specific changes in regulatory T cell and iNKT cell development in the Foxo3cKO thymus. Lastly, the thymic defects observed in adulthood correlated with mild signs of altered peripheral immunotolerance in aged Foxo3cKO mice. Moreover, the deficiency in Foxo3 moderately aggravated the autoimmune predisposition observed in Aire-deficient mice. Our findings highlight the importance of Foxo3 in preserving the homeostasis of TECs and in supporting their role in T cell development and tolerance.


Subject(s)
Epithelial Cells , Forkhead Box Protein O3 , Homeostasis , Thymus Gland , Animals , Thymus Gland/metabolism , Thymus Gland/cytology , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Epithelial Cells/metabolism , Mice , Mice, Knockout , Cell Differentiation , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Mice, Inbred C57BL
2.
ACS Biomater Sci Eng ; 9(5): 2514-2523, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37074315

ABSTRACT

The thymus is responsible for the selection and development of T cells, having an essential role in the establishment of adaptive immunity. Thymic epithelial cells (TECs) are key players in T cell development interacting with thymocytes in the thymic 3D environment. Feeder-layer cells have been frequently used as platforms for the successful establishment of TEC cultures. Nevertheless, the role of the feeder cell-derived extracellular matrix (ECM) on TEC cultures was not previously reported. Therefore, this work aimed at assessing the effect of the ECM produced by feeder cells cultured at two different densities on the establishment of TEC culture. Due to the high surface area and porosity, electrospun fibrous meshes were used to support ECM deposition. The feeder cell-derived ECM was efficiently recovered after decellularization, maintaining the composition of major proteins. All the decellularized matrices were permeable and showed an increase in surface mechanical properties after decellularization. TEC cultures confirmed that the ECM density impacts cellular performance, with higher densities showing a decreased cellular activity. Our findings provide evidence that feeder cell-derived ECM is a suitable substrate for TEC culture and can potentially be applied in thymus bioengineering.


Subject(s)
Epithelial Cells , Extracellular Matrix , Feeder Cells , Epithelial Cells/metabolism , Extracellular Matrix/metabolism , T-Lymphocytes/metabolism , Thymus Gland/metabolism
3.
Sci Transl Med ; 15(687): eabo1930, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36921032

ABSTRACT

Autoimmune diseases are life-threatening disorders that cause increasing disability over time. Systemic lupus erythematosus (SLE) and other autoimmune diseases arise when immune stimuli override mechanisms of self-tolerance. Accumulating evidence has demonstrated that protein glycosylation is substantially altered in autoimmune disease development, but the mechanisms by which glycans trigger these autoreactive immune responses are still largely unclear. In this study, we found that presence of microbial-associated mannose structures at the surface of the kidney triggers the recognition of DC-SIGN-expressing γδ T cells, inducing a pathogenic interleukin-17a (IL-17a)-mediated autoimmune response. Mice lacking Mgat5, which have a higher abundance of mannose structures in the kidney, displayed increased γδ T cell infiltration into the kidney that was associated with spontaneous development of lupus in older mice. N-acetylglucosamine supplementation, which promoted biosynthesis of tolerogenic branched N-glycans in the kidney, was found to inhibit γδ T cell infiltration and control disease development. Together, this work reveals a mannose-γδ T cell-IL-17a axis in SLE immunopathogenesis and highlights glycometabolic reprogramming as a therapeutic strategy for autoimmune disease treatment.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Animals , Mice , Autoimmunity , Mannose , Interleukin-17/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism
4.
iScience ; 26(2): 105972, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36687317

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved to variants associated with milder disease. We employed the k18-hACE2 mouse model to study how differences in the course of infection by SARS-CoV-2 variants alpha, delta, and omicron relate to tissue pathology and the immune response triggered. We documented a variant-specific pattern of infection severity, inducing discrete lung and blood immune responses and differentially impacting primary lymphoid organs. Infections with variants alpha and delta promoted bone marrow (BM) emergency myelopoiesis, with blood and lung neutrophilia. The defects in the BM hematopoietic compartment extended to the thymus, with the infection by the alpha variant provoking a marked thymic atrophy. Importantly, the changes in the immune responses correlated with the severity of infection. Our study provides a comprehensive platform to investigate the modulation of disease by SARS-CoV-2 variants and underscores the impact of this infection on the function of primary lymphoid organs.

5.
Eur J Immunol ; 53(3): e2250202, 2023 03.
Article in English | MEDLINE | ID: mdl-36642953

ABSTRACT

Within the thymus, thymic epithelial cells (TECs) provide a dedicated niche for the selection of functional T cells expressing a highly variable and self-tolerant T-cell receptor (TCR) repertoire. In this minireview, we start by summarizing recent studies that have improved our understanding on the composition of cortical TEC and medullary TEC microenvironments. Next, we focus on the molecular processes that control the function of TECs in T-cell selection. In particular, we discuss the role of cortical TECs in positive selection and the pathways employed by these cells to generate and present selecting self-peptides:MHC II complexes. Several studies have underscored the role of the ß5t-containing thymoproteasome in the production of unique MHC I-bound peptides critical for CD8 T-cell selection. Contrarily, the identity of the molecular determinants that regulate the generation of MHC II-bound self-peptides capable of positive selecting CD4 T cells is far more uncertain. We highlight recent advances that interconnect the autophagy-lysosomal pathway, the presentation of specific sets of self-peptide:MHC II complexes, and the diversification of CD4 TCR repertoire. Lastly, we discuss how these findings may open up new avenues for deciphering the identity of the MHC I and MHC II ligandome in the thymus.


Subject(s)
Epithelial Cells , Thymus Gland , Peptides/metabolism , CD4-Positive T-Lymphocytes , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/metabolism , Receptors, Antigen, T-Cell/metabolism
6.
Autophagy ; 19(2): 426-439, 2023 02.
Article in English | MEDLINE | ID: mdl-35535798

ABSTRACT

Within the thymus, thymic epithelial cells (TECs) provide dedicated thymic stroma microenvironments for T cell development. Because TEC functionality is sensitive to aging and cytoablative therapies, unraveling the molecular elements that coordinate their thymopoietic role has fundamental and clinical implications. Particularly, the selection of CD4 T cells depends on interactions between TCRs expressed on T cell precursors and self-peptides:MHC II complexes presented by cortical TECs (cTECs). Although the macroautophagy/autophagy-lysosomal protein degradation pathway is implicated in CD4 T cell selection, the molecular mechanism that controls the generation of selecting MHC II ligands remains elusive. LAMP2 (lysosomal-associated membrane protein 2) is a well-recognized mediator of autolysosome (AL) maturation. We showed that LAMP2 is highly expressed in cTECs. Notably, genetic inactivation of Lamp2 in thymic stromal cells specifically impaired the development of CD4 T cells that completed positive selection, without misdirecting MHC II-restricted cells into the CD8 lineage. Mechanistically, defects in autophagy in lamp2-deficient cTECs were linked to alterations in MHC II processing, which was associated with a marked reduction in CD4 TCR repertoire diversity selected within the lamp2-deficient thymic stroma. Together, our findings suggest that LAMP2 interconnects the autophagy-lysosomal axis and the processing of selecting self-peptides:MHC II complexes in cTECs, underling its implications for the generation of a broad CD4 TCR repertoire.Abbreviations: AIRE: autoimmune regulator (autoimmune polyendocrinopathy candidiasis ectodermal dystrophy); AL: autolysosome; AP: autophagosome; Baf-A1: bafilomycin A1; B2M: beta-2 microglobulin; CTSL: cathepsin L; CD74/Ii: CD74 antigen (invariant polypeptide of major histocompatibility complex, class II antigen-associated); CFSE: carboxyfluorescein succinimidyl ester; CFU: colony-forming unit; CLIP: class II-associated invariant chain peptides; cTECs: cortical TECs dKO: double knockout; DN: double negative; DP: double positive; ENPEP/LY51: glutamyl aminopeptidase; FOXP3: forkhead box; P3 IFNG/IFNγ: interferon gamma; IKZF2/HELIOS: IKAROS family zinc finger 2; IL2RA/CD25: interleukin 2 receptor, alpha chain; KO: knockout; LAMP2: lysosomal-associated membrane protein 2; LIP: lymphopenia-induced proliferation; Lm: Listeria monocytogenes; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MHC: major histocompatibility complex; mTECs: medullary TECs; PRSS16/TSSP: protease, serine 16 (thymus); SELL/CD62L: selectin, lymphocyte; SP: single positive; TCR: T cell receptor; TCRB: T cell receptor beta chain; TECs: thymic epithelial cells; UEA-1: Ulex europaeus agglutinin-1; WT: wild-type.


Subject(s)
Autophagy , CD4-Positive T-Lymphocytes , Animals , Mice , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal-Associated Membrane Protein 2/metabolism , Autophagy/genetics , Thymus Gland/metabolism , Epithelium/metabolism , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Epithelial Cells/metabolism , Receptors, Antigen, T-Cell/metabolism , Peptides/metabolism , Mice, Inbred C57BL
7.
Development ; 149(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35587733

ABSTRACT

The thymus stroma constitutes a fundamental microenvironment for T-cell generation. Despite the chief contribution of thymic epithelial cells, recent studies emphasize the regulatory role of mesenchymal cells in thymic function. Mesenchymal progenitors are suggested to exist in the postnatal thymus; nonetheless, an understanding of their nature and the mechanism controlling their homeostasis in vivo remains elusive. We resolved two new thymic fibroblast subsets with distinct developmental features. Whereas CD140αß+GP38+SCA-1- cells prevailed in the embryonic thymus and declined thereafter, CD140αß+GP38+SCA-1+ cells emerged in the late embryonic period and predominated in postnatal life. The fibroblastic-associated transcriptional programme was upregulated in CD140αß+GP38+SCA-1+ cells, suggesting that they represent a mature subset. Lineage analysis showed that CD140αß+GP38+SCA-1+ maintained their phenotype in thymic organoids. Strikingly, CD140αß+GP38+SCA-1- generated CD140αß+GP38+SCA-1+, inferring that this subset harboured progenitor cell activity. Moreover, the abundance of CD140αß+GP38+SCA-1+ fibroblasts was gradually reduced in Rag2-/- and Rag2-/-Il2rg-/- thymi, indicating that fibroblast maturation depends on thymic crosstalk. Our findings identify CD140αß+GP38+SCA-1- as a source of fibroblast progenitors and define SCA-1 as a marker for developmental stages of thymic fibroblast differentiation.


Subject(s)
Stem Cells , T-Lymphocytes , Animals , Cell Differentiation , Epithelial Cells , Fibroblasts , Mice , Thymus Gland
10.
Front Immunol ; 12: 668528, 2021.
Article in English | MEDLINE | ID: mdl-34220815

ABSTRACT

The microenvironments formed by cortical (c) and medullary (m) thymic epithelial cells (TECs) play a non-redundant role in the generation of functionally diverse and self-tolerant T cells. The role of TECs during the first weeks of the murine postnatal life is particularly challenging due to the significant augment in T cell production. Here, we critically review recent studies centered on the timely coordination between the expansion and maturation of TECs during this period and their specialized role in T cell development and selection. We further discuss how aging impacts on the pool of TEC progenitors and maintenance of functionally thymic epithelial microenvironments, and the implications of these chances in the capacity of the thymus to sustain regular thymopoiesis throughout life.


Subject(s)
Cell Differentiation , Cell Proliferation , Epithelial Cells/physiology , Stem Cells/physiology , Thymus Gland/physiology , Age Factors , Animals , Cellular Microenvironment , Epithelial Cells/immunology , Humans , Self Tolerance , Stem Cells/immunology , T-Lymphocytes/immunology , Thymocytes/immunology , Thymus Gland/immunology
11.
Eur J Immunol ; 51(2): 311-318, 2021 02.
Article in English | MEDLINE | ID: mdl-32845012

ABSTRACT

Autoimmune regulator+ (Aire) medullary thymic epithelial cells (mTECs) play a critical role in tolerance induction. Several studies demonstrated that Aire+ mTECs differentiate further into Post-Aire cells. Yet, the identification of terminal stages of mTEC maturation depends on unique fate-mapping mouse models. Herein, we resolve this limitation by segmenting the mTEChi (MHCIIhi CD80hi ) compartment into mTECA/hi (CD24- Sca1- ), mTECB/hi (CD24+ Sca1- ), and mTECC/hi (CD24+ Sca1+ ). While mTECA/hi included mostly Aire-expressing cells, mTECB/hi contained Aire+ and Aire- cells and mTECC/hi were mainly composed of cells lacking Aire. The differential expression pattern of Aire led us to investigate the precursor-product relationship between these subsets. Strikingly, transcriptomic analysis of mTECA/hi , mTECB/hi , and mTECC/hi sequentially mirrored the specific genetic program of Early-, Late- and Post-Aire mTECs. Corroborating their Post-Aire nature, mTECC/hi downregulated the expression of tissue-restricted antigens, acquired traits of differentiated keratinocytes, and were absent in Aire-deficient mice. Collectively, our findings reveal a new and simple blueprint to survey late stages of mTEC differentiation.


Subject(s)
Cell Differentiation/genetics , Cell Differentiation/immunology , Epithelial Cells/immunology , Keratinocytes/immunology , Thymus Gland/immunology , Transcription Factors/genetics , Animals , Down-Regulation/genetics , Down-Regulation/immunology , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Mice , Mice, Inbred C57BL , Transcription Factors/immunology , AIRE Protein
12.
Biomacromolecules ; 21(12): 4771-4780, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33238090

ABSTRACT

Thymic epithelial cells (TECs) are the main regulators of T lymphocyte development and selection, requiring a three-dimensional (3D) environment to properly perform these biological functions. The aim of this work was to develop a 3D culture substrate that allows the survival and proliferation of TECs. Thus, electrospun fibrous meshes (eFMs) were functionalized with fibronectin, one of the major extracellular matrix (ECM) proteins of the thymus. For that, highly porous eFMs were activated using oxygen plasma treatment followed by amine insertion, which allows the immobilization of fibronectin through EDC/NHS chemistry. The medullary TECs presented increased proliferation, viability, and protein synthesis when cultured on fibronectin-functionalized eFMs (FN-eFMs). These cells showed a spread morphology, with increased migration toward the inner layers of FN-eFMs and the production of thymic ECM proteins, such as collagen type IV and laminin. These results suggest that FN-eFMs are an effective substrate for supporting thymic cell cultures.


Subject(s)
Epithelial Cells , Fibronectins , Animals , Cell Differentiation , Cells, Cultured , Extracellular Matrix , Extracellular Matrix Proteins , Laminin , Mice
14.
Immunol Lett ; 215: 24-27, 2019 11.
Article in English | MEDLINE | ID: mdl-30853502

ABSTRACT

Within the thymus, cortical and medullary thymic epithelial cells (cTECs and mTECs, respectively) provide unique microenvironments for the development of T cells that are responsive to diverse foreign antigens while self-tolerant. Essential for tolerance induction, mTECs play a critical role in negative selection and T regulatory cell differentiation. In this article, we review the current knowledge on the functional diversity within mTECs and discuss how these novel subsets contribute to tolerance induction and are integrated in the complex blueprint of mTEC differentiation.


Subject(s)
Cell Differentiation/immunology , Epithelial Cells/immunology , Gene Expression Regulation/immunology , Self Tolerance , T-Lymphocytes/immunology , Thymus Gland/immunology , Animals , Epithelial Cells/cytology , Humans , T-Lymphocytes/cytology , Thymus Gland/cytology
15.
Carcinogenesis ; 39(12): 1463-1476, 2018 12 31.
Article in English | MEDLINE | ID: mdl-30256907

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) and T-lymphoblastic lymphomas (T-LBL) are aggressive malignancies of thymocytes. The role of thymic microenvironmental cells and stromal factors in thymocyte malignant transformation and T-ALL development remains little explored. Here, using the TEL-JAK2 transgenic (TJ2-Tg) mouse model of T-ALL/LBL, which is driven by constitutive JAK/STAT signaling and characterized by the acquisition of Notch1 mutations, we sought to identify stromal cell alterations associated with thymic leukemogenesis. Immunofluorescence analyses showed that thymic lymphomas presented epithelial areas characterized by keratin (Krt) 5 and Krt8 expression, adjacently to epithelial-free areas negative for Krt expression. Both areas contained abundant laminin (extracellular matrix) and ER-TR7+ (fibroblasts) CD31+ (endothelial) and CD11c+ (dendritic) cells. Besides Krt5, Krt-positive areas harbored medullary thymic epithelial cells (TECs) labeled by Ulex europaeus agglutinin-1. By performing flow cytometry and RNA sequencing analyses of thymic lymphomas, we observed an enrichment in medullary TEC markers in detriment of cortical TEC markers. To assess whether TECs are important for T-ALL/LBL development, we generated TJ2-Tg mice heterozygous for the FoxN1 transcription factor nude null mutation (Foxn1+/nu). Strikingly, in TJ2-Tg;Foxn1+/nu compound mice, both emergence of malignant cells in preleukemic thymi and overt T-ALL onset were significantly delayed. Moreover, in transplantation assays, leukemic cell expansion within the thymus of recipient Foxn1+/nu mice was reduced as compared with control littermates. Since thymopoesis is largely normal in Foxn1+/nu mice, these results indicate that FoxN1 haploinsufficiency in TECs has a more profound impact in thymic leukemogenesis.


Subject(s)
Carcinogenesis/pathology , Epithelial Cells/pathology , Forkhead Transcription Factors/genetics , Leukemia, T-Cell/genetics , Leukemia, T-Cell/pathology , Thymus Gland/pathology , Animals , Biomarkers, Tumor , Cell Differentiation/genetics , Disease Models, Animal , Epithelium/pathology , Mice , Mice, Inbred C57BL , Mice, Nude , Mice, Transgenic/genetics , Mutation/genetics , Sequence Analysis, RNA/methods , Signal Transduction/genetics , Stromal Cells/pathology
16.
J Immunol ; 200(4): 1389-1398, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29321277

ABSTRACT

Despite the well-documented effect of castration in thymic regeneration, the singular contribution of the bone marrow (BM) versus the thymus to this process remains unclear. The chief role of IL-7 in pre- and intrathymic stages of T lymphopoiesis led us to investigate the impact of disrupting this cytokine during thymic rebound induced by androgen blockade. We found that castration promoted thymopoiesis in young and aged wild-type mice. In contrast, only young germline IL-7-deficient (Il7-/- ) mice consistently augmented thymopoiesis after castration. The increase in T cell production was accompanied by the expansion of the sparse medullary thymic epithelial cell and the peripheral T cell compartment in young Il7-/- mice. In contrast to young Il7-/- and wild-type mice, the poor thymic response of aged Il7-/- mice after castration was associated with a defect in the expansion of BM hematopoietic progenitors. These findings suggest that BM-derived T cell precursors contribute to thymic rebound driven by androgen blockade. To assess the role of IL-7 within the thymus, we generated mice with conditional deletion of IL-7 (Il7 conditional knockout [cKO]) in thymic epithelial cells. As expected, Il7cKO mice presented a profound defect in T cell development while maintaining an intact BM hematopoietic compartment across life. Unlike Il7-/- mice, castration promoted the expansion of BM precursors and enhanced thymic activity in Il7cKO mice independently of age. Our findings suggest that the mobilization of BM precursors acts as a prime catalyst of castration-driven thymopoiesis.


Subject(s)
Hematopoietic Stem Cells/immunology , Lymphopoiesis/physiology , Thymus Gland/immunology , Androgens/metabolism , Animals , Bone Marrow Cells/immunology , Castration , Cell Differentiation/physiology , Interleukin-7/deficiency , Interleukin-7/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Thymus Gland/cytology
17.
Trends Immunol ; 39(1): 2-5, 2018 01.
Article in English | MEDLINE | ID: mdl-29236672

ABSTRACT

Medullary thymic epithelial cells (mTECs) play a central role in T cell tolerance. However, how the mTEC compartment is maintained remains elusive. We review recent discoveries on new transcription factors involved in mTEC homeostasis and discuss the possibility that their actions might be facilitated by the unique biology of mTECs.


Subject(s)
Epithelial Cells/physiology , Immune Tolerance , T-Lymphocytes/physiology , Thymus Gland/physiology , Animals , Cell Differentiation , Hematopoiesis , Humans , Mice , Transcription Factors/genetics , Transcription Factors/metabolism
18.
J Immunol ; 199(4): 1429-1439, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28687660

ABSTRACT

IFN-γ is known to be predominantly produced by lymphoid cells such as certain subsets of T cells, NK cells, and other group 1 innate lymphoid cells. In this study, we used IFN-γ reporter mouse models to search for additional cells capable of secreting this cytokine. We identified a novel and rare population of nonconventional IFN-γ-producing cells of hematopoietic origin that were characterized by the expression of Thy1.2 and the lack of lymphoid, myeloid, and NK lineage markers. The expression of IFN-γ by this population was higher in the liver and lower in the spleen. Furthermore, these cells were present in mice lacking both the Rag2 and the common γ-chain (γc) genes (Rag2-/-γc-/-), indicating their innate nature and their γc cytokine independence. Rag2-/-γc-/- mice are as resistant to Mycobacterium avium as Rag2-/- mice, whereas Rag2-/- mice lacking IFN-γ are more susceptible than either Rag2-/- or Rag2-/-γc-/- These lineage-negative CD45+/Thy1.2+ cells are found within the mycobacterially induced granulomatous structure in the livers of infected Rag2-/-γc-/- animals and are adjacent to macrophages that expressed inducible NO synthase, suggesting a potential protective role for these IFN-γ-producing cells. Accordingly, Thy1.2-specific mAb administration to infected Rag2-/-γc-/- animals increased M. avium growth in the liver. Overall, our results demonstrate that a population of Thy1.2+ non-NK innate-like cells present in the liver expresses IFN-γ and can confer protection against M. avium infection in immunocompromised mice.


Subject(s)
Hematopoietic Stem Cells/immunology , Immunity, Innate , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Interleukin Receptor Common gamma Subunit/immunology , Animals , Antibodies, Monoclonal/administration & dosage , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Granuloma/immunology , Granuloma/microbiology , Immunocompromised Host/immunology , Interferon-gamma/immunology , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Killer Cells, Natural/immunology , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/immunology , Liver/cytology , Liver/immunology , Liver/microbiology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mycobacterium avium/growth & development , Mycobacterium avium/immunology , Nitric Oxide Synthase Type II/biosynthesis , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/immunology , Spleen/cytology , Spleen/immunology , Thy-1 Antigens/genetics , Thy-1 Antigens/immunology
19.
Blood ; 130(4): 478-488, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28559356

ABSTRACT

Thymic epithelial cells (TECs) provide crucial microenvironments for T-cell development and tolerance induction. As the regular function of the thymus declines with age, it is of fundamental and clinical relevance to decipher new determinants that control TEC homeostasis in vivo. Beyond its recognized tumor suppressive function, p53 controls several immunoregulatory pathways. To study the cell-autonomous role of p53 in thymic epithelium functioning, we developed and analyzed mice with conditional inactivation of Trp53 in TECs (p53cKO). We report that loss of p53 primarily disrupts the integrity of medullary TEC (mTEC) niche, a defect that spreads to the adult cortical TEC compartment. Mechanistically, we found that p53 controls specific and broad programs of mTEC differentiation. Apart from restraining the expression and responsiveness of the receptor activator of NF-κB (RANK), which is central for mTEC differentiation, deficiency of p53 in TECs altered multiple functional modules of the mTEC transcriptome, including tissue-restricted antigen expression. As a result, p53cKO mice presented premature defects in mTEC-dependent regulatory T-cell differentiation and thymocyte maturation, which progressed to a failure in regular and regenerative thymopoiesis and peripheral T-cell homeostasis in the adulthood. Lastly, peripheral signs of altered immunological tolerance unfold in mutant mice and in immunodeficient mice that received p53cKO-derived thymocytes. Our findings position p53 as a novel molecular determinant of thymic epithelium function throughout life.


Subject(s)
Cell Differentiation/immunology , Epithelial Cells/immunology , T-Lymphocytes, Regulatory/immunology , Thymocytes/immunology , Tumor Suppressor Protein p53/immunology , Animals , Cell Differentiation/genetics , Epithelial Cells/cytology , Mice , Mice, Knockout , T-Lymphocytes, Regulatory/cytology , Thymocytes/cytology , Thymus Gland , Tumor Suppressor Protein p53/genetics
20.
Eur J Immunol ; 47(6): 958-969, 2017 06.
Article in English | MEDLINE | ID: mdl-28318017

ABSTRACT

Cortical (cTEC) and medullary (mTEC) thymic epithelial cells establish key microenvironments for T-cell differentiation and arise from thymic epithelial cell progenitors (TEP). However, the nature of TEPs and the mechanism controlling their stemness in the postnatal thymus remain poorly defined. Using TEC clonogenic assays as a surrogate to survey TEP activity, we found that a fraction of cTECs generates specialized clonal-derived colonies, which contain cells with sustained colony-forming capacity (ClonoTECs). These ClonoTECs are EpCAM+MHCII-Foxn1lo cells that lack traits of mature cTECs or mTECs but co-express stem-cell markers, including CD24 and Sca-1. Supportive of their progenitor identity, ClonoTECs reintegrate within native thymic microenvironments and generate cTECs or mTECs in vivo. Strikingly, the frequency of cTECs with the potential to generate ClonoTECs wanes between the postnatal and young adult immunocompetent thymus, but it is sustained in alymphoid Rag2-/-Il2rg-/- counterparts. Conversely, transplantation of wild-type bone marrow hematopoietic progenitors into Rag2-/-Il2rg-/- mice and consequent restoration of thymocyte-mediated TEC differentiation diminishes the frequency of colony-forming units within cTECs. Our findings provide evidence that the cortical epithelium contains a reservoir of epithelial progenitors whose abundance is dynamically controlled by continual interactions with developing thymocytes across lifespan.


Subject(s)
Epithelial Cells/cytology , Stem Cells/physiology , Thymocytes/physiology , Thymus Gland/cytology , Animals , Cell Differentiation , Clone Cells , Epithelial Cells/physiology , Humans , Lymphocyte Activation , Mice , Thymocytes/immunology , Thymus Gland/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...