Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 636: 122817, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36905974

ABSTRACT

Pickering emulsions are free from molecular and classical surfactants and are stabilized by solid particles, creating long-term stability against emulsion coalescence. Additionally, these emulsions are both environmentally and skin-friendly, creating new and unexplored sensorial perceptions. Although the literature mostly describes conventional emulsions (oil-in-water), there are unconventional emulsions (multiple, oil-in-oil and water-in-water) with excellent prospects and challenges in skin application as oil-free systems, permeation enhancers and topical drug delivery agents, with various possibilities in pharmaceutical and cosmetic products. However, up to now, these conventional and unconventional Pickering emulsions are not yet available as commercial products. This review brings to the discussion some important aspects such as the use of phases, particles, rheological and sensorial perception, as well as current trends in the development of these emulsions.


Subject(s)
Drug Delivery Systems , Skin , Emulsions/metabolism , Skin/metabolism , Skin Absorption , Surface-Active Agents/metabolism
2.
Int J Biol Macromol ; 167: 1499-1507, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33212110

ABSTRACT

Lignin was extracted from oil palm empty fruit bunches under four different conditions. The lignin samples were characterized and employed in the green synthesis of silver nanoparticles. Two-dimensional HSQC NMR analysis showed that lignins extracted under more aggressive conditions (3.5% acid, 60 min) exhibited less signals and thus, presented a more degraded chemical structure. Additionally, those lignins obtained under harsh conditions (3.5% acid, 60 min) exhibited higher antioxidant capacity than those obtained under mild conditions (1.5% acid, 20 min). Formation of lignin-mediated silver nanoparticles was confirmed by color change during their synthesis. The surface plasmon resonance peaks (423-427 nm) in UV-visible spectra also confirmed the synthesis of AgNPs. AgNPs showed spherical shape, polycrystalline nature and average size between 18 and 20 nm. AgNPs, in suspension, presented a negative Zeta potential profile. Lignin was assumed to contribute in the antioxidant capacity exhibited by AgNPs. All AgNPs presented no significant differences on the disk diffusion antimicrobial susceptibility test against E. coli. The minimum inhibitory concentration of HAL3-L AgNPs (62.5 µg·mL-1) was better than other physicochemically produced AgNPs (100 µg·mL-1).


Subject(s)
Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Green Chemistry Technology/methods , Lignin/chemistry , Lignin/isolation & purification , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Silver/chemistry , Dynamic Light Scattering , Escherichia coli/drug effects , Fruit/chemistry , Green Chemistry Technology/instrumentation , Magnetic Resonance Spectroscopy , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Palm Oil , Phoeniceae/chemistry , Spectrophotometry , Spectroscopy, Fourier Transform Infrared , Surface Plasmon Resonance
3.
J Pharm Sci ; 108(2): 860-869, 2019 02.
Article in English | MEDLINE | ID: mdl-30222977

ABSTRACT

Perillyl alcohol is a natural compound that has attracted a significant interest due to its potent antitumor activity. However, clinical trials have exhibited poor tolerance by oral administration, mainly due to gastrointestinal side effects. We propose the entrapment of perillyl alcohol into poly(D,L-lactic acid)-block-poly(ethylene glycol) (PLA-b-PEG) as delivery platform (entrapment efficiency of 63%-68%). The influence of different concentrations of the tensoactives poly(vinyl alcohol) and sodium cholate (SC) on shear strength and morphology was evaluated by confocal laser scanning microscopy and interfacial tension studies. Only the microcapsules formulated with SC maintained their sphericity when submitted to shear stress. These results indicate that the interface is better organized with SC, conferring mutual stacked packing that is able to better stabilize the organic drop. The in vitro release profile of the drug from the microcapsules was correlated with pore formation and polymer degradation, best fitted to the Baker-Lonsdale model. The loaded microcapsules showed an IC50 equivalent to that of the free drug (80 µg/mL) after 72 h of exposure. However, after 24 h of exposure, loaded microcapsules showed an IC50 almost two-fold higher (220 µg/mL) suggesting gradual release.


Subject(s)
Antineoplastic Agents/administration & dosage , Delayed-Action Preparations/chemistry , Lactates/chemistry , Monoterpenes/administration & dosage , Polyethylene Glycols/chemistry , Antineoplastic Agents/chemistry , Capsules , Drug Liberation , Kinetics , Monoterpenes/chemistry , Polyvinyl Alcohol/chemistry , Sodium Cholate/chemistry
4.
Acta Biomater ; 64: 313-322, 2017 12.
Article in English | MEDLINE | ID: mdl-28986300

ABSTRACT

Polylactide (PLA) polymers containing five distinct lengths of fluorinated (from C3F7 to C13F27) and non-fluorinated (C6H13) end-groups were successfully synthesized by ring-opening polymerization of d,l-lactide. Fluorination was expected to increase the encapsulation efficiency of perfluorohexane (PFH). 150 nm nanocapsules were obtained and 19F nuclear magnetic resonance revealed that nanocapsules formulated with fluorinated polymers increased by 2-fold the encapsulation efficiency of PFH compared with non-fluorinated derivatives, without any effect of fluorine chain length. Fluorination of the polymers did not induce any specific in vitro cytotoxicity of nanocapsules towards HUVEC and J774.A1 cell lines. The echogenicity of fluorinated-shelled nanocapsules was increased by 3-fold to 40-fold compared to non-fluorinated nanocapsules or nanoparticles devoid of a perfluorohexane core for both conventional and contrast-specific ultrasound imaging modalities. In particular, an enhanced echogenicity and contrast-specific response was observed as the fluorinated chain-length increased, probably due to an increase of density and promotion of bubble nucleation. When submitted to focused ultrasound, both intact and exploded nanocapsules could be observed, also with end-group dependency, indicating that PFH was partly vaporized. These results pave the way to the design of theranostic perfluorohexane nanocapsules co-encapsulating a drug for precision delivery using focused ultrasound. STATEMENT OF SIGNIFICANCE: We have synthesized novel fluorinated polyesters and formulated them into nanocapsules of perfluorohexane as ultrasound contrast agents. This nanosystem has been thoroughly characterized by several techniques and we show that fluorination of the biodegradable polymer favors the encapsulation of perfluorohexane without producing further reduction of cell viability. Contrary to nanocapsules of perfluoroctyl bromide formulated with the fluorinated polymers [32], the presence of the fluorinated moieties leads to an increase of echogenicity that is dependent of the length of the fluorinated moiety. Morevover, the ability of nanocapsules to explode when submitted to focused ultrasound also depends on the length of the fluorinated chain. These results pave the way to theranostic perfluorohexane nanocapsules co-encapsulating a drug for precision delivery using focused ultrasound.


Subject(s)
Contrast Media , Drug Delivery Systems/methods , Fluorocarbons , Nanocapsules/chemistry , Polyesters , Ultrasonic Waves , Ultrasonography , Animals , Contrast Media/chemistry , Contrast Media/pharmacology , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Materials Testing , Mice , Polyesters/chemistry , Polyesters/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...