Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neoplasia ; 13(10): 947-60, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22028620

ABSTRACT

We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6(-/-) mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6(-/-) mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression.


Subject(s)
B-Lymphocytes/immunology , Brain Neoplasms/therapy , Genetic Therapy/methods , Glioblastoma/therapy , T-Lymphocytes/immunology , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , B-Lymphocytes/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cytotoxicity, Immunologic/immunology , Female , Glioblastoma/genetics , Glioblastoma/pathology , Herpesvirus 1, Human/enzymology , Male , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Positive Regulatory Domain I-Binding Factor 1 , T-Lymphocytes/metabolism , Thymidine Kinase/genetics , Thymidine Kinase/immunology , Thymidine Kinase/metabolism , Transcription Factors/genetics , Transcription Factors/immunology , Transcription Factors/metabolism
2.
Clin Cancer Res ; 15(13): 4401-14, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19570774

ABSTRACT

PURPOSE: In preparation for a phase I clinical trial using a combined cytotoxic/immunotherapeutic strategy with adenoviruses (Ad) expressing Flt3L (Ad-Flt3L) and thymidine kinase (Ad-TK) to treat glioblastoma (GBM), we tested the hypothesis that Ad-TK+GCV would be the optimal tumor-killing agent in relation to efficacy and safety when compared with other proapoptotic approaches. EXPERIMENTAL DESIGN: The efficacy and neurotoxicity of Ad-TK+GCV was compared with Ads encoding the proapoptotic cytokines [tumor necrosis factor-alpha, tumor necrosis factor-related apoptosis-inducing factor (TRAIL), and Fas ligand (FasL)], alone or in combination with Ad-Flt3L. In rats bearing small GBMs (day 4), only Ad-TK+GCV or Ad-FasL improved survival. RESULTS: In rats bearing large GBMs (day 9), the combination of Ad-Flt3L with Ad-FasL did not improve survival over FasL alone, whereas Ad-Flt3L combined with Ad-TK+GCV led to 70% long-term survival. Expression of FasL and TRAIL caused severe neuropathology, which was not encountered when we used Ad-TK+/-Ad-Flt3L. In vitro, all treatments elicited release of high mobility group box 1 protein (HMGB1) from dying tumor cells. In vivo, the highest levels of circulating HMGB1 were observed after treatment with Ad-TK+GCV+Ad-Flt3L; HMGB1 was necessary for the therapeutic efficacy of AdTK+GCV+Ad-Flt3L because its blockade with glycyrrhizin completely blocked tumor regression. We also showed the killing efficacy of Ad-TK+GCV in human GBM cell lines and GBM primary cultures, which also elicited release of HMGB1. CONCLUSIONS: Our results indicate that Ad-TK+GCV+Ad-Flt3L exhibit the highest efficacy and safety profile among the several proapoptotic approaches tested. The results reported further support the implementation of this combined approach in a phase I clinical trial for GBM.


Subject(s)
Apoptosis/physiology , Brain Neoplasms/blood , Brain Neoplasms/therapy , Glioma/blood , Glioma/therapy , HMGB1 Protein/blood , Neurons/pathology , Adenoviridae/genetics , Adenoviridae/physiology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Combined Modality Therapy , Glioma/metabolism , Glioma/pathology , HMGB1 Protein/metabolism , Neoplasm Transplantation , Neurons/virology , Oncolytic Virotherapy/adverse effects , Rats , Rats, Inbred Lew , Thymidine Kinase/genetics , Transplantation, Isogeneic , Treatment Outcome , Tumor Cells, Cultured , fms-Like Tyrosine Kinase 3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...