Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Infect Dis ; 24(1): 664, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961345

ABSTRACT

This paper introduces a novel approach to modeling malaria incidence in Nigeria by integrating clustering strategies with regression modeling and leveraging meteorological data. By decomposing the datasets into multiple subsets using clustering techniques, we increase the number of explanatory variables and elucidate the role of weather in predicting different ranges of incidence data. Our clustering-integrated regression models, accompanied by optimal barriers, provide insights into the complex relationship between malaria incidence and well-established influencing weather factors such as rainfall and temperature.We explore two models. The first model incorporates lagged incidence and individual-specific effects. The second model focuses solely on weather components. Selection of a model depends on decision-makers priorities. The model one is recommended for higher predictive accuracy. Moreover, our findings reveal significant variability in malaria incidence, specific to certain geographic clusters and beyond what can be explained by observed weather variables alone.Notably, rainfall and temperature exhibit varying marginal effects across incidence clusters, indicating their differential impact on malaria transmission. High rainfall correlates with lower incidence, possibly due to its role in flushing mosquito breeding sites. On the other hand, temperature could not predict high-incidence cases, suggesting that other factors other than temperature contribute to high cases.Our study addresses the demand for comprehensive modeling of malaria incidence, particularly in regions like Nigeria where the disease remains prevalent. By integrating clustering techniques with regression analysis, we offer a nuanced understanding of how predetermined weather factors influence malaria transmission. This approach aids public health authorities in implementing targeted interventions. Our research underscores the importance of considering local contextual factors in malaria control efforts and highlights the potential of weather-based forecasting for proactive disease management.


Subject(s)
Malaria , Weather , Humans , Malaria/epidemiology , Malaria/transmission , Incidence , Nigeria/epidemiology , Cluster Analysis , Regression Analysis , Temperature , Models, Statistical , Meteorological Concepts
2.
Nonlinear Dyn ; 107(3): 3085-3109, 2022.
Article in English | MEDLINE | ID: mdl-34955605

ABSTRACT

Since the earliest outbreak of COVID-19, the disease continues to obstruct life normalcy in many parts of the world. The present work proposes a mathematical framework to improve non-pharmaceutical interventions during the new normal before vaccination settles herd immunity. The considered approach is built from the viewpoint of decision makers in developing countries where resources to tackle the disease from both a medical and an economic perspective are scarce. Spatial auto-correlation analysis via global Moran's index and Moran's scatter is presented to help modulate decisions on hierarchical-based priority for healthcare capacity and interventions (including possible vaccination), finding a route for the corresponding deployment as well as landmarks for appropriate border controls. These clustering tools are applied to sample data from Sri Lanka to classify the 26 Regional Director of Health Services (RDHS) divisions into four clusters by introducing convenient classification criteria. A metapopulation model is then used to evaluate the intra- and inter-cluster contact restrictions as well as testing campaigns under the absence of confounding factors. Furthermore, we investigate the role of the basic reproduction number to determine the long-term trend of the regressing solution around disease-free and endemic equilibria. This includes an analytical bifurcation study around the basic reproduction number using Brouwer Degree Theory and asymptotic expansions as well as related numerical investigations based on path-following techniques. We also introduce the notion of average policy effect to assess the effectivity of contact restrictions and testing campaigns based on the proposed model's transient behavior within a fixed time window of interest.

4.
Sci Rep ; 11(1): 11302, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050241

ABSTRACT

COVID-19 pandemic continues to obstruct social lives and the world economy other than questioning the healthcare capacity of many countries. Weather components recently came to notice as the northern hemisphere was hit by escalated incidence in winter. This study investigated the association between COVID-19 cases and two components, average temperature and relative humidity, in the 16 states of Germany. Three main approaches were carried out in this study, namely temporal correlation, spatial auto-correlation, and clustering-integrated panel regression. It is claimed that the daily COVID-19 cases correlate negatively with the average temperature and positively with the average relative humidity. To extract the spatial auto-correlation, both global Moran's [Formula: see text] and global Geary's [Formula: see text] were used whereby no significant difference in the results was observed. It is evident that randomness overwhelms the spatial pattern in all the states for most of the observations, except in recent observations where either local clusters or dispersion occurred. This is further supported by Moran's scatter plot, where states' dynamics to and fro cold and hot spots are identified, rendering a traveling-related early warning system. A random-effects model was used in the sense of case-weather regression including incidence clustering. Our task is to perceive which ranges of the incidence that are well predicted by the existing weather components rather than seeing which ranges of the weather components predicting the incidence. The proposed clustering-integrated model associated with optimal barriers articulates the data well whereby weather components outperform lag incidence cases in the prediction. Practical implications based on marginal effects follow posterior to model diagnostics.


Subject(s)
COVID-19/epidemiology , Cluster Analysis , Cold Temperature , Computer Simulation , Correlation of Data , Germany/epidemiology , Humans , Humidity , Incidence , Pandemics , Regression Analysis , Seasons , Spatio-Temporal Analysis , Weather
5.
Malar J ; 20(1): 185, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33858432

ABSTRACT

BACKGROUND: Increasingly complex models have been developed to characterize the transmission dynamics of malaria. The multiplicity of malaria transmission factors calls for a realistic modelling approach that incorporates various complex factors such as the effect of control measures, behavioural impacts of the parasites to the vector, or socio-economic variables. Indeed, the crucial impact of household size in eliminating malaria has been emphasized in previous studies. However, increasing complexity also increases the difficulty of calibrating model parameters. Moreover, despite the availability of much field data, a common pitfall in malaria transmission modelling is to obtain data that could be directly used for model calibration. METHODS: In this work, an approach that provides a way to combine in situ field data with the parameters of malaria transmission models is presented. This is achieved by agent-based stochastic simulations, initially calibrated with hut-level experimental data. The simulation results provide synthetic data for regression analysis that enable the calibration of key parameters of classical models, such as biting rates and vector mortality. In lieu of developing complex dynamical models, the approach is demonstrated using most classical malaria models, but with the model parameters calibrated to account for such complex factors. The performance of the approach is tested against a wide range of field data for Entomological Inoculation Rate (EIR) values. RESULTS: The overall transmission characteristics can be estimated by including various features that impact EIR and malaria incidence, for instance by reducing the mosquito-human contact rates and increasing the mortality through control measures or socio-economic factors. CONCLUSION: Complex phenomena such as the impact of the coverage of the population with long-lasting insecticidal nets (LLINs), changes in behaviour of the infected vector and the impact of socio-economic factors can be included in continuous level modelling. Though the present work should be interpreted as a proof of concept, based on one set of field data only, certain interesting conclusions can already be drawn. While the present work focuses on malaria, the computational approach is generic, and can be applied to other cases where suitable in situ data is available.


Subject(s)
Anopheles/physiology , Malaria/epidemiology , Malaria/transmission , Mosquito Control/statistics & numerical data , Mosquito Vectors/physiology , Socioeconomic Factors , Systems Analysis , Animals , Feeding Behavior , Humans , Insecticide-Treated Bednets/statistics & numerical data , Models, Theoretical , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL