Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(2): e2309700120, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38170745

ABSTRACT

α-, ß-, and γ-Synuclein are intrinsically disordered proteins implicated in physiological processes in the nervous system of vertebrates. α-synuclein (αSyn) is the amyloidogenic protein associated with Parkinson's disease and certain other neurodegenerative disorders. Intensive research has focused on the mechanisms that cause αSyn to form amyloid structures, identifying its NAC region as being necessary and sufficient for amyloid assembly. Recent work has shown that a 7-residue sequence (P1) is necessary for αSyn amyloid formation. Although γ-synuclein (γSyn) is 55% identical in sequence to αSyn and its pathological deposits are also observed in association with neurodegenerative conditions, γSyn is resilient to amyloid formation in vitro. Here, we report a rare single nucleotide polymorphism (SNP) in the SNCG gene encoding γSyn, found in two patients with amyotrophic lateral sclerosis (ALS). The SNP results in the substitution of Met38 with Ile in the P1 region of the protein. These individuals also had a second, common and nonpathological, SNP in SNCG resulting in the substitution of Glu110 with Val. In vitro studies demonstrate that the Ile38 variant accelerates amyloid fibril assembly. Contrastingly, Val110 retards fibril assembly and mitigates the effect of Ile38. Substitution of residue 38 with Leu had little effect, while Val retards, and Ala increases the rate of amyloid formation. Ile38 γSyn also results in the formation of γSyn-containing inclusions in cells. The results show how a single point substitution can enhance amyloid formation of γSyn and highlight the P1 region in driving amyloid formation in another synuclein family member.


Subject(s)
Amyotrophic Lateral Sclerosis , Parkinson Disease , Animals , Humans , Amyloid/chemistry , Amyotrophic Lateral Sclerosis/genetics , gamma-Synuclein/genetics , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Amyloidogenic Proteins
2.
Cell Rep ; 42(8): 112883, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37498742

ABSTRACT

Coat protein complex I (COPI) is best known for its role in Golgi-endoplasmic reticulum (ER) trafficking, responsible for the retrograde transport of ER-resident proteins. The ER is crucial to neuronal function, regulating Ca2+ homeostasis and the distribution and function of other organelles such as endosomes, peroxisomes, and mitochondria via functional contact sites. Here we demonstrate that disruption of COPI results in mitochondrial dysfunction in Drosophila axons and human cells. The ER network is also disrupted, and the neurons undergo rapid degeneration. We demonstrate that mitochondria-ER contact sites (MERCS) are decreased in COPI-deficient axons, leading to Ca2+ dysregulation, heightened mitophagy, and a decrease in respiratory capacity. Reintroducing MERCS is sufficient to rescue not only mitochondrial distribution and Ca2+ uptake but also ER morphology, dramatically delaying neurodegeneration. This work demonstrates an important role for COPI-mediated trafficking in MERC formation, which is an essential process for maintaining axonal integrity.


Subject(s)
Coat Protein Complex I , Endoplasmic Reticulum , Humans , Endoplasmic Reticulum/metabolism , Coat Protein Complex I/metabolism , Golgi Apparatus/metabolism , Mitochondria/metabolism , Axons/metabolism
3.
Children (Basel) ; 9(5)2022 May 07.
Article in English | MEDLINE | ID: mdl-35626858

ABSTRACT

Serious bacterial infections (SBI) in children are associated with considerable morbidity and mortality, and their early identification remains challenging. The role of laboratory tests in this setting is still debated, and new biomarkers are needed. This prospective, observational, single-center study aims to evaluate the diagnostic role of blood biomarkers in detecting SBI in children presenting with signs of systemic inflammatory response syndrome (SIRS). A panel of biomarkers was performed, including C-reactive protein (CRP), procalcitonin (PCT), white blood cell count (WBC), absolute neutrophil count (ANC), interleukin (IL)-6, IL-8, IL-10, human terminal complement complex (C5b-9), Plasmalemma-Vesicle-associated protein 1 (PV-1), Intercellular Adhesion Molecule-1 (ICAM-1), and Phospholipase A2 (PLA2). Among 103 patients (median age 2.9 years, 60% males), 39 had a diagnosis of SBI (38%). Significant predictors of SBI were CRP (p = 0.001) and ICAM-1 (p = 0.043). WBC (p = 0.035), ANC (p = 0.012) and ANC/WBC ratio (p = 0.015) were also significantly associated with SBI in children without pre-existing neutropenia. ROC curves, however, revealed suboptimal performance for all variables. Nevertheless, a model that combined CRP and ANC/WBC ratio had more in-depth diagnostic accuracy than either of the two variables. Overall, this study confirms the limited usefulness of blood biomarkers for the early diagnosis of SBI. WBC, ANC, ANC/WBC ratio, CRP, and ICAM-1 showed the best, albeit moderate, diagnostic accuracy.

4.
Am J Reprod Immunol ; 79(4): e12823, 2018 04.
Article in English | MEDLINE | ID: mdl-29427369

ABSTRACT

PROBLEM: Procalcitonin (PCT) is the prohormone of calcitonin which is usually released from neuroendocrine cells of the thyroid gland (parafollicular) and the lungs (K cells). PCT is synthesized by almost all cell types and tissues, including monocytes and parenchymal tissue, upon LPS stimulation. To date, there is no evidence for PCT expression in the placenta both in physiological and pathological conditions. METHOD: Circulating and placental PCT levels were analysed in pre-eclamptic (PE) and control patients. Placental cells and macrophages (PBDM), stimulated with PE sera, were analysed for PCT expression. The effect of anti-TNF-α antibody was analysed. RESULTS: Higher PCT levels were detected in PE sera and in PE placentae compared to healthy women. PE trophoblasts showed increased PCT expression compared to those isolated from healthy placentae. PE sera induced an upregulation of PCT production in macrophages and placental cells. The treatment of PBDM with PE sera in the presence of anti-TNF-α completely abrogated the effect induced by pathologic sera. CONCLUSION: Trophoblast cells are the main producer of PCT in PE placentae. TNF-α, in association with other circulating factors present in PE sera, upregulates PCT production in macrophages and normal placental cells, thus contributing to the observed increased in circulating PCT in PE sera.


Subject(s)
Calcitonin/metabolism , Macrophages/immunology , Placenta/metabolism , Pre-Eclampsia/metabolism , Pregnancy , Trophoblasts/metabolism , Adult , Cohort Studies , Female , Humans , Placenta/pathology , Trophoblasts/pathology , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation , Young Adult
5.
Front Immunol ; 8: 1559, 2017.
Article in English | MEDLINE | ID: mdl-29209316

ABSTRACT

C1q is the first recognition subcomponent of the complement classical pathway, which acts toward the clearance of pathogens and apoptotic cells. C1q is also known to modulate a range of functions of immune and non-immune cells, and has been shown to be involved in placental development and sensorial synaptic pruning. We have recently shown that C1q can promote tumor by encouraging their adhesion, migration, and proliferation in addition to angiogenesis and metastasis. In this study, we have examined the role of human C1q in the microenvironment of malignant pleural mesothelioma (MPM), a rare form of cancer commonly associated with exposure to asbestos. We found that C1q was highly expressed in all MPM histotypes, particularly in epithelioid rather than in sarcomatoid histotype. C1q avidly bound high and low molecular weight hyaluronic acid (HA) via its globular domain. C1q bound to HA was able to induce adhesion and proliferation of mesothelioma cells (MES) via enhancement of ERK1/2, SAPK/JNK, and p38 phosphorylation; however, it did not activate the complement cascade. Consistent with the modular organization of the globular domain, we demonstrated that C1q may bind to HA through ghA module, whereas it may interact with human MES through the ghC. In conclusion, C1q highly expressed in MPM binds to HA and enhances the tumor growth promoting cell adhesion and proliferation. These data can help develop novel diagnostic markers and molecular targets for MPM.

SELECTION OF CITATIONS
SEARCH DETAIL
...