Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nature ; 625(7994): 282-286, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200297

ABSTRACT

The large-scale conversion of N2 and H2 into NH3 (refs. 1,2) over Fe and Ru catalysts3 for fertilizer production occurs through the Haber-Bosch process, which has been considered the most important scientific invention of the twentieth century4. The active component of the catalyst enabling the conversion was variously considered to be the oxide5, nitride2, metallic phase or surface nitride6, and the rate-limiting step has been associated with N2 dissociation7-9, reaction of the adsorbed nitrogen10 and also NH3 desorption11. This range of views reflects that the Haber-Bosch process operates at high temperatures and pressures, whereas surface-sensitive techniques that might differentiate between different mechanistic proposals require vacuum conditions. Mechanistic studies have accordingly long been limited to theoretical calculations12. Here we use X-ray photoelectron spectroscopy-capable of revealing the chemical state of catalytic surfaces and recently adapted to operando investigations13 of methanol14 and Fischer-Tropsch synthesis15-to determine the surface composition of Fe and Ru catalysts during NH3 production at pressures up to 1 bar and temperatures as high as 723 K. We find that, although flat and stepped Fe surfaces and Ru single-crystal surfaces all remain metallic, the latter are almost adsorbate free, whereas Fe catalysts retain a small amount of adsorbed N and develop at lower temperatures high amine (NHx) coverages on the stepped surfaces. These observations indicate that the rate-limiting step on Ru is always N2 dissociation. On Fe catalysts, by contrast and as predicted by theory16, hydrogenation of adsorbed N atoms is less efficient to the extent that the rate-limiting step switches following temperature lowering from N2 dissociation to the hydrogenation of surface species.

2.
J Chem Phys ; 157(16): 164705, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36319417

ABSTRACT

We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10-8 Torr) and O2 (3 × 10-8 Torr). Under these conditions, we detect two transient CO species with narrow 2π* peaks, suggesting little 2π* interaction with the surface. Based on polarization measurements, we find that these two species have opposing orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation with respect to the surface. We also directly detect gas-phase CO2 using a mass spectrometer and observe weak signatures of bent adsorbed CO2 at slightly higher x-ray energies than the 2π* region. These results are compared to previously reported TR-XAS results at the O K-edge, where the CO background pressure was three times lower (2 × 10-8 Torr) while maintaining the same O2 pressure. At the lower CO pressure, in the CO 2π* region, we observed adsorbed CO and a distribution of OC-O bond lengths close to the CO oxidation transition state, with little indication of gas-like CO. The shift toward "gas-like" CO species may be explained by the higher CO exposure, which blocks O adsorption, decreasing O coverage and increasing CO coverage. These effects decrease the CO desorption barrier through dipole-dipole interaction while simultaneously increasing the CO oxidation barrier.

3.
ACS Catal ; 12(13): 7609-7621, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35815066

ABSTRACT

Carbide formation on iron-based catalysts is an integral and, arguably, the most important part of the Fischer-Tropsch synthesis process, converting CO and H2 into synthetic fuels and numerous valuable chemicals. Here, we report an in situ surface-sensitive study of the effect of pressure, temperature, time, and gas feed composition on the growth dynamics of two distinct iron-carbon phases with the octahedral and trigonal prismatic coordination of carbon sites on an Fe(110) single crystal acting as a model catalyst. Using a combination of state-of-the-art X-ray photoelectron spectroscopy at an unprecedentedly high pressure, high-energy surface X-ray diffraction, mass spectrometry, and theoretical calculations, we reveal the details of iron surface carburization and product formation under semirealistic conditions. We provide a detailed insight into the state of the catalyst's surface in relation to the reaction.

4.
Science ; 376(6593): 603-608, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35511988

ABSTRACT

The active chemical state of zinc (Zn) in a zinc-copper (Zn-Cu) catalyst during carbon dioxide/carbon monoxide (CO2/CO) hydrogenation has been debated to be Zn oxide (ZnO) nanoparticles, metallic Zn, or a Zn-Cu surface alloy. We used x-ray photoelectron spectroscopy at 180 to 500 millibar to probe the nature of Zn and reaction intermediates during CO2/CO hydrogenation over Zn/ZnO/Cu(211), where the temperature is sufficiently high for the reaction to rapidly turn over, thus creating an almost adsorbate-free surface. Tuning of the grazing incidence angle makes it possible to achieve either surface or bulk sensitivity. Hydrogenation of CO2 gives preference to ZnO in the form of clusters or nanoparticles, whereas in pure CO a surface Zn-Cu alloy becomes more prominent. The results reveal a specific role of CO in the formation of the Zn-Cu surface alloy as an active phase that facilitates efficient CO2 methanol synthesis.

5.
J Am Chem Soc ; 144(16): 7038-7042, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35394273

ABSTRACT

The CO hydrogenation reaction over the Rh(111) and (211) surfaces has been investigated operando by X-ray photoelectron spectroscopy at a pressure of 150 mbar. Observations of the resting state of the catalyst give mechanistic insight into the selectivity of Rh for generating ethanol from CO hydrogenation. This study shows that the Rh(111) surface does not dissociate all CO molecules before hydrogenation of the O and C atoms, which allows methoxy and other both oxygenated and hydrogenated species to be visible in the photoelectron spectra.

6.
Angew Chem Int Ed Engl ; 61(3): e202111021, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34758161

ABSTRACT

Subsurface oxygen has been proposed to be crucial in oxide-derived copper (OD-Cu) electrocatalysts for enhancing the binding of CO intermediates during CO2 reduction reaction (CO2 RR). However, the presence of such oxygen species under reductive conditions still remains debated. In this work, the existence of subsurface oxygen is validated by grazing incident hard X-ray photoelectron spectroscopy, where OD-Cu was prepared by reduction of Cu oxide with H2 without exposing to air. The results suggest two types of subsurface oxygen embedded between the fully reduced metallic surface and the Cu2 O buried beneath: (i) oxygen staying at lattice defects and/or vacancies in the surface-most region and (ii) interstitial oxygen intercalated in metal structure. This study adds convincing support to the presence of subsurface oxygen in OD-Cu, which previously has been suggested to play an important role to mitigate the σ-repulsion of Cu for CO intermediates in CO2 RR.

7.
Phys Rev Lett ; 129(27): 276001, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36638285

ABSTRACT

The electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (∼100 fs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate. This is followed by slower changes on a few picoseconds timescale, shown to be consistent with thermalization of the complete C/Ni system. Density functional theory spectrum simulations support this interpretation.

8.
Nat Commun ; 12(1): 6117, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34675205

ABSTRACT

Heterogeneous catalyst surfaces are dynamic entities that respond rapidly to changes in their local gas environment, and the dynamics of the response is a decisive factor for the catalysts' action and activity. Few probes are able to map catalyst structure and local gas environment simultaneously under reaction conditions at the timescales of the dynamic changes. Here we use the CO oxidation reaction and a Pd(100) model catalyst to demonstrate how such studies can be performed by time-resolved ambient pressure photoelectron spectroscopy. Central elements of the method are cyclic gas pulsing and software-based event-averaging by image recognition of spectral features. A key finding is that at 3.2 mbar total pressure a metallic, predominantly CO-covered metallic surface turns highly active for a few seconds once the O2:CO ratio becomes high enough to lift the CO poisoning effect before mass transport limitations triggers formation of a √5 oxide.

9.
ACS Catal ; 11(15): 9128-9135, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34476111

ABSTRACT

Performing fundamental operando catalysis studies under realistic conditions is a key to further develop and increase the efficiency of industrial catalysts. Operando X-ray photoelectron spectroscopy (XPS) experiments have been limited to pressures, and the relevance for industrial applications has been questioned. Herein, we report on the CO oxidation experiment on Pd(100) performed at a total pressure of 1 bar using XPS. We investigate the light-off regime and the surface chemical composition at the atomistic level in the highly active phase. Furthermore, the observed gas-phase photoemission peaks of CO2, CO, and O2 indicate that the kinetics of the reaction during the light-off regime can be followed operando, and by studying the reaction rate of the reaction, the activation energy is calculated. The reaction was preceded by an in situ oxidation study in 7% O2 in He and a total pressure of 70 mbar to confirm the surface sensitivity and assignment of the oxygen-induced photoemission peaks. However, oxygen-induced photoemission peaks were not observed during the reaction studies, but instead, a metallic Pd phase is present in the highly active regime under the conditions applied. The novel XPS setup utilizes hard X-rays to enable high-pressure studies, combined with a grazing incident angle to increase the surface sensitivity of the measurement. Our findings demonstrate the possibilities of achieving chemical information of the catalyst, operando, on an atomistic level, under industrially relevant conditions.

10.
J Phys Chem Lett ; 12(18): 4461-4465, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33955763

ABSTRACT

Using grazing incidence X-rays and X-ray photoelectron spectroscopy during the mass transfer limited catalytic oxidation of CO, the long-range surface structure of Pd(100) was investigated. Under the reaction conditions of 50:4 O2 to CO, 300 mbar pressure, and temperatures between 200 and 450 °C, the surface structure resulting from oxidation and the subsequent oxide reduction was elucidated. The reduction cycle was halted, and while under reaction conditions, angle-dependent X-ray photoelectron spectroscopy close to the critical angle of Pd and modeling of the data was performed. Two proposed models for the system were compared. The suggestion with the metallic islands formed on top of the oxide island was shown to be consistent with the data.

11.
Appl Spectrosc ; 75(2): 137-144, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32597682

ABSTRACT

We present a new method to maintain constant gas pressure over a sample during in situ measurements. The example shown here is a differentially pumped high-pressure X-ray photoelectron spectroscopy system, but this technique could be applied to many in situ instruments. By using the pressure of the differential stage as a feedback source to change the sample position, a new level of consistency has been achieved. Depending on the absolute value of the sample-to-aperture distance, this technique allows one to maintain the distance within several hundred nanometers, which is below the limit of typical optical microscopy systems. We show that this method is well suited to compensate for thermal drift. Thus, X-ray photoelectron spectroscopy data can be acquired continuously while the sample is heated and maintaining constant pressure over the sample. By implementing a precise manipulator feedback system, pressure variations of less than 5% were reached while the temperature was varied by 400 ℃. The system is also shown to be highly stable under significant changes in gas flow. After changing the flow by a factor of two, the pressure returned to the set value within 60 s.

12.
Med Teach ; 35(3): 251-3, 2013.
Article in English | MEDLINE | ID: mdl-23339530

ABSTRACT

AIM: The aim of the project Pharmacases.de was to develop an innovative concept for creating high-quality e-learning content which integrates and promotes the theoretical and cooperative skills of final-year medical students and is easily adoptable by cooperating institutes and hospitals. METHODS AND RESULTS: A peer-teaching concept was developed in which final-year medical students with the elective pharmacology independently researched and wrote e-learning cases of clinical pharmacology ("pharmacases"). Subject-specific expertise was acquired by consulting a peer network of elective students of other disciplines. The created material was subjected to a multi-step peer review and published on the open-access internet platform http://www.pharmacases.de . At present, the website contains 45 e-learning cases, 27 quizzes, and a student-managed discussion forum. Each month, approximately 1200 students access the e-learning content on the website with above-average evaluation results. SUMMARY AND CONCLUSION: The didactic concept of Pharmacases.de enabled the efficient generation of high-quality e-learning content in a student-centered and interdisciplinary manner and was well received by the students. It will likely facilitate the transfer of theoretical pharmacological knowledge into clinical practice.


Subject(s)
Education, Distance , Internet , Peer Group , Pharmacology, Clinical/education , Education, Medical, Undergraduate , Educational Measurement , Humans , Teaching
SELECTION OF CITATIONS
SEARCH DETAIL
...