Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895804

ABSTRACT

In this study, a surface hardening of AISI 52100 bearing steel was performed by ultrasonic nanocrystal surface modification (UNSM), and electrolytic-plasma thermo-cyclic surface modification (EPSM), and their effects on the wear resistance were investigated. To evaluate the impact of these treatments on the wear resistance, the friction tests under dry conditions were conducted using a ball-on-disk tribometer in accordance with ASTM G99. The microstructure of the samples before and after treatment was characterized by scanning electron microscopy. The micro-hardness with respect to the depth from the top surface was measured using a Vickers micro-hardness tester. Microstructural observations showed that EPSM treatment led to the formation of residual austenite in the surface layer, while UNSM treatment led to the formation of a surface severe plastic deformation layer on the surface of the samples. The increase in the micro-hardness of the treated layer was confirmed after UNSM at room temperature and after EPSM at different cycles. The highest increase in wear resistance was observed for the specimen treated by UNSM treatment at 700 °C and five cycles of EPSM treatment. In addition, the wear volume, which has correlation with the friction coefficient and hardness, was determined.

2.
Materials (Basel) ; 16(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903071

ABSTRACT

The parameters of the improved design of the pressure mechanism of a roller technological machine for squeezing wet materials are investigated in this article. The factors influencing the parameters of the pressure mechanism, which provide the required force between the working rolls of a technological machine during the processing of moisture-saturated fibrous materials, such as wet leather, were studied. The processed material is drawn in the vertical direction between the working rolls under their pressure. This study aimed to determine the parameters that make it possible to create the required pressure of the working rolls depending on the change in the thickness of the material being processed. A pressure mechanism of working rolls mounted on levers is proposed. In the design of the proposed device, the length of the levers does not change due to the movement of the sliders when turning the levers; this provides a horizontal direction of the sliders. The change in the pressure force of the working rolls is determined depending on the variation in the nip angle, the coefficient of friction, and other factors. Based on theoretical studies concerning the feed of the semi-finished leather product between the squeezing rolls, graphs were plotted, and conclusions were drawn. An experimental roller stand designated for pressing multi-layer leather semi-finished products has been developed and manufactured. An experiment was carried out to determine the factors affecting the technological process of squeezing excess moisture from wet semi-finished leather products with their multilayer package together with moisture-removing materials by means of their vertical supply on a base plate between rotating squeezing shafts also covered with moisture-removing materials. According to the results of the experiment, the optimal process parameters were selected. It is recommended to carry out the process of squeezing the moisture from two wet semi-finished leather products at a pass rate more than twice as high and with a pressing force of the working shafts two times lower compared to the analog. According to the results of the study, the optimal parameters for the process of squeezing the moisture from two layers of wet leather semi-finished products were chosen, namely the feed rate of 0.34 m/s and a pressing force of the squeezing rollers of 32 kN/m. The use of the proposed roller device allowed an increase of two times or more in the productivity of the process of processing wet leather semi-finished products on the basis of the proposed technique compared to known roller wringers.

3.
Materials (Basel) ; 16(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614802

ABSTRACT

Welding defects are common during the production of large welded structures. However, few studies have explored methods of compensating for clear welding defects without resorting to re-welding. Here, an ultrasonic peening method to compensate for the deteriorated mechanical properties of overlap weld defects without repair welding was studied. We experimentally investigated changes in the mechanical properties of defective welds before and after ultrasonic peening. The weld specimen with an overlap defect contained a large cavity-type defect inside the weld bead, which significantly reduced the fatigue life. When the surface of the defective test piece was peened, the fatigue life of the weld plate was restored, resulting in an equivalent or higher number of cycles to failure, compared to a specimen with a normal weld. The recovery of mechanical properties was attributed to the effect of surface work hardening by ultrasonic peening and the change in stress distribution. Thus, ultrasonic peening could compensate for the deterioration of mechanical properties such as tensile strength, fatigue life, and elongation due to overlap defects, without resorting to repair welding.

4.
Sci Rep ; 13(1): 1308, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36693885

ABSTRACT

Alloy 718 is commonly used in the maritime and aerospace industries due to its strength and durability, particularly in engine rotating components such as disks, fan blades, and high-pressure compressors. As a new type of 3D printing technology, directed energy deposition (DED) can employ lasers to melt metal powders or wires to fabricate arbitrary-shaped workpieces directly from customized data, thereby making machining more synergistic and intuitive. However, the surface properties of the DED-printed alloy 718 samples, such as surface roughness and wear resistance, are typically subpar. By introducing severe plastic deformation to the near-surface, ultrasonic nanocrystal surface modification (UNSM) can be used as a post-processing method and results in altered properties. The uniaxial tensile test reveals that the UNSM-treated alloy 718 exhibits a higher mechanical property. Moreover, using a fretting test rig in accordance with the cylinder-on-plane agreement, a higher wear resistance for UNSM-treated alloy 718 is observed. This study employs the finite element method to fully comprehend the effect of UNSM on wear performance. The fretting wear process of Inconel 718 alloy is established using an energy-based finite element model. Considering the severe practical scenarios, the Johnson-Cook constitutive model is implemented, with the linear isotropic hardening model capturing the plastic behavior. In comparison to experimental measurements, the finite element results demonstrate unprecedented wear loss consistency with an error of less than 2%. Therefore, we conclude that the finite element model built in this study exhibits a high accuracy and can be used to analyze the effect of UNSM on fretting wear behavior. According to finite element analysis, as the normal load increases, the improvement in wear resistance induced by UNSM decreases. Given that the finite element model is based on the energy method, the effects of coefficient of friction (COF) and wear coefficient modified by UNSM are investigated separately. According to the findings, the UNSM-modified COF and wear coefficient play a significant role in determining the wear characteristics. Due to the removal of a substantial amount of material from the central area of the alloy 718 surface by wear, it is also possible to observe that severe plastic strains are primarily concentrated at the edges of the wear scars.

5.
Materials (Basel) ; 14(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209040

ABSTRACT

In this study, the effects of ultrasonic nanocrystal surface modification (UNSM) technology on the tribological properties and scratch-induced adhesion behavior of a heat-resistant KHR 45A steel cracking tube, which is used for the pyrolysis process, were investigated. The main objective of this study is to investigate the effects of pre- and post-carburizing UNSM treatment on the tribological and adhesion performances of carburized domestic KHR 45A (A) steel and to compare the results with the existing carburized Kubota-made KHR 45A steel (B). A carburizing process was carried out on the polished and UNSM-treated KHR 45A steel substrates, which were cut out from the cracking tube, at 300 °C heat exposure for 300 h. The thickness of the carburizing layer was about 10 µm. UNSM technology was applied as pre- and post-carburizing surface treatment; both reduced the friction coefficient and wear rate compared to that of the carburized KHR 45A steel substrate. It was also found that the application of UNSM technology increased the critical load, which implies the improvement of adhesion behavior between the carburizing layer and the KHR steel substrate. The application of UNSM technology as pre- and post-carburizing surface treatment could help replace carburized Kubota-made KHR 45A steel (B) thanks to the improved tribological performance, enhanced scratch resistance, load bearing capacity, and adhesion of domestic KHR 45A (A) steel.

6.
Materials (Basel) ; 13(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321944

ABSTRACT

Glass with strong durability and transparency has been in the spotlight in various fields, including displays. Elastic and shear moduli and Poisson's ratio are important properties of glasses. The purpose of this study is to evaluate the change in mechanical properties, such as the dynamic elastic modulus and Poisson's ratio, with respect to the chemical strengthening time of glass for display applications, as measured by static and dynamic methods. The basic measurement principle of the dynamic method is to measure acoustic speed or resonant frequency using an ultrasonic generator. The mechanical properties of both non-strengthened and chemically strengthened glasses were investigated. It was found that the strength of the chemically strengthened glass decreased when chemical strengthening time increased. Chemical strengthening increased the bending strength and decreased the elastic modulus due to the introduction of compressive residual stress at the surface.

7.
Materials (Basel) ; 13(14)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708583

ABSTRACT

The current research reports the improvement in surface integrity and tribological characteristics of steel prepared using a powder metallurgy (PM) by ultrasonic nanocrystal surface modification (UNSM) at 25 and 300 °C. The surface integrity and tribological properties of three samples, namely, as-PM, UNSM-25 and UNSM-300 were investigated. The average surface roughness (Ra) of the as-PM, UNSM-25 and UNSM-300 samples was measured using a non-contact 3D scanner, where it was found to be 3.21, 1.14 and 0.74 µm, respectively. The top surface hardness was also measured in order to investigate the influence of UNSM treatment temperature on the hardness. The results revealed that the as-PM sample with a hardness of 109 HV was increased up to 165 and 237 HV, corresponding to a 32.1% and 57.2% after both the UNSM treatment at 25 and 300 °C, respectively. XRD analysis was also performed to confirm if any changes in chemistry and crystal size were took place after the UNSM treatment at 25 and 300 °C. In addition, dry tribological properties of the samples were investigated. The friction coefficient of the as-PM sample was 0.284, which was reduced up to 0.225 and 0.068 after UNSM treatment at 25 and 300 °C, respectively. The wear resistance was also enhanced by 33.2 and 52.9% after UNSM treatment at both 25 and 300 °C. Improvements in surface roughness, hardness and tribological properties was attributed to the elimination of big and deep porosities after UNSM treatment. Wear track of the samples and wear scar of the counter surface balls were investigated by SEM to reach a comprehensive discussion on wear mechanisms. Overall, it was confirmed that UNSM treatment at 25 and 300 °C had a beneficial effect on the surface integrity and tribological characteristics of sintered steel by the PM that is used in a shock absorber for a car engine.

8.
Materials (Basel) ; 13(4)2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32074946

ABSTRACT

This study introduces a newly developed cladding device, through printing AISI 1045 carbon steel as single and double layers onto American Society for Testing and Materials (ASTM) H13 tool steel plate. In this study, the mechanical and tribological characteristics of single and double layers were experimentally investigated. Both layers were polished first and then subjected to ultrasonic nanocrystal surface modification (UNSM) treatment to improve the mechanical and tribological characteristics. Surface roughness, surface hardness and depth profile measurements, and X-ray diffraction (XRD) analysis of the polished and UNSM-treated layers were carried out. After tribological tests, the wear tracks of both layers were characterized by scanning electron microscopy (SEM) along with energy-dispersive X-ray spectroscopy (EDX). The surface roughness (Ra and Rz) of the single and double UNSM-treated layers was reduced 74.6% and 85.9% compared to those of both the as-received layers, respectively. In addition, the surface hardness of the single and double layers was dramatically increased, by approximately 23.6% and 23.4% after UNSM treatment, respectively. There was no significant reduction in friction coefficient of both the UNSM-treated layers, but the wear resistance of the single and double UNSM-treated layers was enhanced by approximately 9.4% and 19.3% compared to the single and double polished layers, respectively. It can be concluded that UNSM treatment was capable of improving the mechanical and tribological characteristics of both layers. The newly developed cladding device can be used as an alternative additive manufacturing (AM) method, but efforts and upgrades need to progress in order to increase the productivity of the device and also improve the quality of the layers.

9.
Materials (Basel) ; 12(21)2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31689954

ABSTRACT

The paper presents the results of experimental studies to determine the strain properties and characteristics of a chrome leather semi-finished product of middle-weight bovine hide by its topographic sections and the coatings of the processing compression rolls. The strain pressure equations of depend on the topographic sections of a leather semi-finished product are obtained, and the results of experiments on the effect of a number of layers on the amount of pressed moisture are presented. A mathematical dependence of the pressed moisture from the leather semi-finished product is obtained under various pressure values, rates, and the number of skin layers with monchons. The influence of the number of layers of leather semi-finished products with moisture-removing materials (monchons) on the process of moisture extraction at their vertical feed on the base plate is determined. In this paper, the influence of the number of skin layers and moisture-removing materials (monchons) on the technological process of moisture extraction from wet leather semi-finished products at their vertical feed on a base plate is studied as well.

10.
Materials (Basel) ; 12(5)2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30845737

ABSTRACT

This study deals with the friction and wear behavior of the vertical spindle and V-belt to improve the reliability, operation and to extend the service life of a cotton picker. The vertical spindle made of low-carbon steel (ST3) was treated by the ultrasonic nanocrystal surface modification (UNSM) technique to control the friction and wear behavior. It was found that the UNSM technique reduced surface roughness and increased surface hardness of the vertical spindle. The friction and wear behavior of the vertical spindle and V-belt was assessed by carrying out tribological tests and the results showed that the UNSM-treated vertical spindle generated a higher friction coefficient compared to the untreated one due to having less slip. In case of wear resistance, unmeasurable wear occurred on the surface of the vertical spindle due to its significant high hardness compared to the hardness of the V-belt that came into contact with the vertical spindle in relative motion. Hence, the wear behavior and mechanisms of the V-belts were systematically investigated and also discussed based on the wear track profiles and micrographs. It can be concluded that the application of the UNSM technique to the vertical spindle may contribute to improve the performance of cotton pickers by reducing the slip and prolonging the service life.

11.
Materials (Basel) ; 11(9)2018 Sep 08.
Article in English | MEDLINE | ID: mdl-30205576

ABSTRACT

Slim bearings are used widely in aircrafts, robots, wind turbines, and industrial machineries, where their size and weight are very important for the performance of a system. The common materials of slim bearings for robots and industrial machineries are based on SAE52110 bearing steel, and special heat treatment and a super polishing process are used and adapted to improve the rolling contact fatigue (RCF) strength of bearings. The improvement in RCF strength, depending on contact stress, surface hardness, and the friction behavior before and after ultrasonic nanocrystalline surface modification (UNSM) treatment was validated. Simple analysis shows that these improvements can reduce the size and weight of slim bearings down to about 3.40⁻21.25% and 14.3⁻26.05%, respectively. Hence, this UNSM technology is an opportunity to implement cost-saving and energy consuming super-polishing, a heat treatment process, and to reduce the size and weight of slim bearings.

12.
Materials (Basel) ; 11(8)2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30082672

ABSTRACT

This work comparatively investigated the strength (hardness, yield strength, dynamic elastic modulus, and surface residual stress), fretting failure, and corrosion resistance of the as-received and treated Ni-based superalloy Alloy 718. The goal of the current research is to improve the hardness, fretting wear, and corrosion resistances of Alloy 718 through the ultrasonic nanocrystal surface modification (UNSM) process with the aim of extending the lifespan of aircraft and nuclear components made of Alloy 718. The experimental results revealed that the surface hardness increased by about 32%, the fretting wear resistance increased by about 14%, and the corrosion resistance increased by about 18% after UNSM process. In addition, the UNSM process induced a tremendous high compressive surface residual stress of about -1324 MPa that led to an increase in yield strength and dynamic Young's modulus by about 14 and 9%, respectively. Grain size refinement up to ~50 nm after the UNSM process is found to be responsible for the increase in surface hardness as well. The depth of the effective layer generated by the UNSM process was about 20 µm. It was concluded that the UNSM process played a vital role in increasing the strength and enhancing the corrosion and fretting resistances of Alloy 718.

13.
Materials (Basel) ; 11(3)2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29558402

ABSTRACT

Microstructural evolution and wear performance of Tantalum (Ta) treated by ultrasonic nanocrystalline surface modification (UNSM) at 25 and 1000 °C were reported. The UNSM treatment modified a surface along with subsurface layer with a thickness in the range of 20 to 150 µm, which depends on the UNSM treatment temperature, via the surface severe plastic deformation (S²PD) method. The cross-sectional microstructure of the specimens was observed by electron backscattered diffraction (EBSD) in order to confirm the microstructural alteration in terms of effective depth and refined grain size. The surface hardness measurement results, including depth profile, revealed that the hardness of the UNSM-treated specimens at both temperatures was increased in comparison with those of the untreated ones. The increase in UNSM treatment temperature led to a further increase in hardness. Moreover, both the UNSM-treated specimens with an increased hardness resulted in a higher resistance to wear in comparison with those of the untreated ones under dry conditions. The increase in hardness and induced compressive residual stress that depend on the formation of severe plastically deformed layer with the refined nano-grains are responsible for the enhancement in wear resistance. The findings of this study may be implemented in response to various industries that are related to strength improvement and wear enhancement issues of Ta.

14.
Materials (Basel) ; 10(2)2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28772549

ABSTRACT

In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique was applied to normal and heat-treated rails made of 60 kgK steel to enhance the wear resistance of the wheel-rail interaction. The hardness and compressive residual stress values of the untreated and UNSM-treated rails were measured by the Brinell hardness tester and X-ray diffraction technique, respectively. It was found, according to the measurement results, that the hardness was increased by about 20% and 8%, whereas the compressive residual stress was induced by about 52% and 62% for the UNSM-treated normal and heat-treated rails, respectively. The UNSM-treated normal rail showed a slightly higher hardness than the heat-treated rail. The wear resistance of rails with respect to rotating speed and rolling time was assessed using a rolling contact wear (RCW) tester under dry conditions. The RCW test results revealed that the wear of the UNSM-treated rails was enhanced in comparison with those of the untreated rails. Also, the wear amount of the rails was increased with increasing the rotation speed. The UNSM-treated normal rail exhibited the highest wear resistance with respect to the rotation speed. The wear mechanisms of the rails are also discussed based on microscopic images of the worn out surfaces.

15.
Ultrason Sonochem ; 39: 698-706, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28732996

ABSTRACT

The surface of ß-type Ti-Nb-Ta-Zr (TNTZ) alloy, which is a promising material for biomedical applications, was treated with the ultrasonic nanocrystal surface modification (UNSM) technique to enhance its hardness. As a result, a gradient nanostructured (GNS) layer was generated in the surface; the microstructure of the top surface layer consisted of nanoscale lamellae with a width of about 60-200nm. In addition, there were lamellar grains consisting of nanostructured subgrains having unclear and wavy boundaries. The treated surface exhibited a hardness value of ∼385HV compared to 190HV for the untreated alloy. It was further determined that highly dense deformation twins were generated at a depth of ∼40-150µm below the UNSM-treated surface. These deformation twins led to a significant work hardening effect which aided in enhancing the mechanical properties. It was also found that UNSM treatment resulted in the formation of micropatterns on the surface, which would be beneficial for high bioactivity and bone regeneration performance of TNTZ implants.


Subject(s)
Nanoparticles/chemistry , Titanium/chemistry , Ultrasonic Waves , Surface Properties
16.
Mater Sci Eng C Mater Biol Appl ; 71: 176-185, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27987696

ABSTRACT

We propose herein a nondestructive surface modification technique called ultrasonic nanocrystalline surface modification (UNSM) to increase the strength and to improve the tribological performance of 316L stainless steel (SS) tubing. Nanocrystallization along nearly the complete tube thickness of 200µm was achieved by UNSM technique that was confirmed by electron backscatter diffraction (EBSD). Nano-hardness of the untreated and UNSM-treated specimens was measured using a nanoindentation. Results revealed that a substantial increase in hardness was obtained for the UNSM-treated specimen that may be attributed to the nanocrystallization and refined grains. Stress-strain behavior of the untreated and UNSM-treated specimens was assessed by a 3-point bending test. It was found that the UNSM-treated specimen exhibited a much higher strength than that of the untreated specimen. In addition, the tribological behavior of the untreated and UNSM-treated specimens with an outer diameter (OD) of 1.6mm and an inner diameter (ID) of 1.2mm was investigated using a cylinder-on-cylinder (crossed tubes of equal radius) tribo-tester against itself under dry conditions at ambient temperature. The friction coefficient and wear resistance of the UNSM-treated specimen were remarkably improved compared to that of the untreated specimen. The significant increase in hardness after UNSM treatment is responsible for the improved friction coefficient and wear resistance of the tubing. Thus, the UNSM technique was found to be beneficial to improving the mechanical and tribological properties of 316L SS tubing for various potential biomedical applications, in particular for coronary artery stents.


Subject(s)
Coronary Vessels , Friction , Stainless Steel/chemistry , Stents , Humans , Stress, Mechanical
17.
Materials (Basel) ; 9(11)2016 Nov 22.
Article in English | MEDLINE | ID: mdl-28774070

ABSTRACT

An anti-friction Babbitt alloy-coated bearing made by a casting process is a journal bearing, which is used in an ore cone crusher eccentric. The main purpose of the Babbitt coated eccentric is to provide a low friction to support and guide a rotating shaft. Despite the fact that the Babbitt-coated eccentric offers a low friction coefficient and can be operated without a continuous supply of lubricant, it suffers from mining environments and short service life. In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique was used to further reduce the friction coefficient, to increase the wear resistance, and to extend the service life of the Sn-based Babbitt metal. The friction and wear behavior of the Sn-based Babbitt metal was investigated using a block-on-ring tester under both dry and oil-lubricated conditions. The results of the experiments revealed that the friction and wear behavior of Sn-based Babbitt metal could be improved by the application of the UNSM technique. The friction and wear mechanisms of the specimens were explained and discussed in terms of changes in surface properties-microstructure, surface hardness, surface roughness, etc.

18.
J Nanosci Nanotechnol ; 13(12): 8167-75, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24266210

ABSTRACT

Diamond-like carbon (DLC) coatings typically show low friction and high wear resistance. In this study, the friction and fretting wear characteristics of PVD, CVD and CVD-Si DLC coatings were investigated against an alumina (Al2O3) ball under water-lubricated fretting conditions. The objective of this study is to investigate and compare the friction and fretting wear characteristics of those DLC coatings at various fretting frequencies. The test results showed that the PVD DLC coating led to a lower friction coefficient and a higher resistance to fretting wear compared to those of the CVD and CVD-Si DLC coatings. However, the CVD DLC coating showed that the fretting wear resistance decreases with increasing frequency, while no significant difference in fretting wear resistances of the PVD and CVD-Si DLC coatings was observed. Quantitative surface analyses of the specimens were performed using an energy dispersive spectroscopy (EDS), a laser scanning microscope (LSM), a scanning electron microscope (SEM), an atomic force microscope (AFM) and the Raman spectroscopy.

19.
J Nanosci Nanotechnol ; 13(12): 8176-83, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24266211

ABSTRACT

The tribological characteristics of micro-scale dimpled Cu-based alloy specimen generated using a laser surface texturing (LST) were assessed and compared with that of the untextured specimen. The objective of this study is to improve the tribological characteristics of internal combustion engine (ICE) bearings and bushings made of Cu-based alloy by generating micro-scale dimples using an LST. Fretting wear tests were performed by sliding a hardened SAE52100 steel ball against the untextured and LSTed specimens at a normal load of 5 N under oil-lubricated conditions. The friction force and relative movement between the specimens were measured simultaneously during the fretting tests. The test results showed that the LSTed specimens showed a reduction in friction coefficient and an enhancement in fretting wear resistance compared to that of the untextured specimen. The friction coefficient and fretting wear volume increased with increasing frequency for both untextured and LSTed specimens. The improved tribological properties of the LSTed specimen may be attributed to the micro-scale dimples, refined grain size and high lattice strain. In addition, a model for the nanocrystallization mechanism of the LSTed specimen was proposed.

20.
J Nanosci Nanotechnol ; 12(7): 6089-95, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966714

ABSTRACT

Ultrasonic nanocrystal surface modification (UNSM) technology is a novel surface modification technology that can improve the mechanical and tribological properties of interacting surfaces in relative motion. UNSM treatment was utilized to improve the wear resistance fatigue strength of slim bearing rings made of SAE52100 bearing steel without damaging the raceway surfaces. In this study, wear and fatigue results that were subjected to different impact loads of the UNSM treatment were investigated and compared with those of the untreated specimen. The microhardness of the UNSM-treated specimens increased by about 20%, higher than that of the untreated specimens. The X-ray diffraction analysis showed that a compressive residual stress of more than 1,000 MPa was induced after the UNSM treatment. Also, electron backscatter diffraction analysis was used to study the surface structure and nanograin refinement. The results showed that the rolling contact fatigue life and the rotary bending fatigue strength of the UNSM-treated specimens increased by about 80% and 31%, respectively, compared to those of the untreated specimen. These results might be attributed to the increased microhardness, the induced compressive residual stress, and the nanocrystal structure modification after the UNSM treatment. In addition, the fracture surface analysis showed that the fish eye crack initiation phenomenon was observed after the UNSM treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...