Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Cell Biochem Biophys ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771457

ABSTRACT

The Wnt signaling pathway is identified as one of the main disrupted pathways in Colorectal cancer (CRC). Results from studies focusing on this route will aid greatly in the detection and treatment of CRC. MicroRNAs (MiRs), particularly MiR-490, has emerged as key regulator of gene expression in biological pathways, making it an attractive research target. This is notably true for the Wnt signaling pathway, which is usually disordered in CRC tissues. This study aimed to evaluate the expression level of MiR-490 isomiRs and determine some of its key target genes involved in Wnt signaling pathway in CRC tissues and cell lines, based on experimental and bioinformatics analysis. Elevated expression of GSK3ß and CCND1 indicate that the progression of CRC tumor is associated with the inhibitory effect of MiR-490 isomiRs on the Wnt/ß-catenin signaling pathway. This finding was supported by the observation of a positive connection between the expression pattern of miR-490-3p and 5p, and CCND1 and GSK3ß in CRC. The valuable results of this study provide a means of identifying biomarkers with the potential to either inhibit or activate CRC cellular pathways.

2.
Reprod Sci ; 31(6): 1456-1485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38472710

ABSTRACT

The fallopian tube (FT) plays a crucial role in the reproductive process by providing an ideal biomechanical and biochemical environment for fertilization and early embryo development. Despite its importance, the biomechanical functions of the FT that originate from its morphological aspects, and ultrastructural aspects, as well as the mechanical properties of FT, have not been studied nor used sufficiently, which limits the understanding of fertilization, mechanotrasduction, and mechanobiology during embryo development, as well as the replication of the FT in laboratory settings for infertility treatments. This paper reviews and revives valuable information on human FT reported in medical literature in the past five decades relevant to the biomechanical aspects of FT. In this review, we summarized the current state of knowledge concerning the morphological, ultrastructural aspects, and mechanical properties of the human FT. We also investigate the potential arising from a thorough consideration of the biomechanical functions and exploring often neglected mechanical aspects. Our investigation encompasses both macroscopic measurements (such as length, diameter, and thickness) and microscopic measurements (including the height of epithelial cells, the percentage of ciliated cells, cilia structure, and ciliary beat frequency). Our primary focus has been on healthy women of reproductive age. We have examined various measurement techniques, encompassing conventional metrology, 2D histological data as well as new spatial measurement techniques such as micro-CT.


Subject(s)
Fallopian Tubes , Fertility , Humans , Female , Fallopian Tubes/physiology , Biomechanical Phenomena/physiology , Fertility/physiology , Cilia/physiology , Cilia/ultrastructure , Animals
3.
Med Oncol ; 40(9): 247, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37480455

ABSTRACT

Drug resistance is one of the clinical challenges that limits the effectiveness of chemotherapy. Recent reports suggest that the unfolded protein response (UPR) and endoplasmic reticulum stress-adaptation signalling pathway, along with increased activation of its inositol-requiring enzyme 1α (IRE1α) arm, may be contributors to the pathogenesis of colorectal cancer (CRC). Here, we aimed to target the IRE1α/XBP1 pathway in order to sensitise CRC cells to the effects of chemotherapy. The CT26 colorectal cell line was treated with tunicamycin, and then was exposed to different concentrations of 5-fluorouracil (5-FU), either alone and/or in combination with the IRE1α inhibitor, 4µ8C. An MTT assay, flow cytometry and RT-PCR were performed to determine cell growth, apoptosis and IRE1α activity, respectively. In vivo BALB/c syngeneic colorectal mice received chemotherapeutic drugs. Treatment responses, tumour sizes and cytotoxicity were assessed via a range of pathological tests. 4µ8C was found to inhibit the growth of CRC, at a concentration of 10 µg/ml, without detectable cytotoxic effects and also significantly enhanced the cytotoxic potential of 5-FU, in CRC cells. In vivo experiments revealed that 4µ8C, at a concentration of 50 µM/kg prevented tumour growth without any cytotoxic or metastatic effects. Interestingly, the combination of 4µ8C with 5-FU remarkably enhanced drug responses, up to 40-60% and also lead to significantly greater inhibition of tumour growth, in comparison to monotherapy, in CRC mice. Targeting the IRE1α/XBP1 axis of the UPR could enhance the effectiveness of chemotherapy in both in vitro and in vivo models of CRC.


Subject(s)
Colorectal Neoplasms , Endoribonucleases , Animals , Mice , Protein Serine-Threonine Kinases , Fluorouracil/pharmacology , Apoptosis , Mice, Inbred BALB C , Colorectal Neoplasms/drug therapy
4.
Front Med (Lausanne) ; 10: 1170331, 2023.
Article in English | MEDLINE | ID: mdl-37215714

ABSTRACT

Background: At the end of 2019, the coronavirus disease 2019 (COVID-19) pandemic increased the hospital burden of COVID-19 caused by the SARS-Cov-2 and became the most significant health challenge for nations worldwide. The severity and high mortality of COVID-19 have been correlated with various demographic characteristics and clinical manifestations. Prediction of mortality rate, identification of risk factors, and classification of patients played a crucial role in managing COVID-19 patients. Our purpose was to develop machine learning (ML)-based models for the prediction of mortality and severity among patients with COVID-19. Identifying the most important predictors and unraveling their relationships by classification of patients to the low-, moderate- and high-risk groups might guide prioritizing treatment decisions and a better understanding of interactions between factors. A detailed evaluation of patient data is believed to be important since COVID-19 resurgence is underway in many countries. Results: The findings of this study revealed that the ML-based statistically inspired modification of the partial least square (SIMPLS) method could predict the in-hospital mortality among COVID-19 patients. The prediction model was developed using 19 predictors including clinical variables, comorbidities, and blood markers with moderate predictability (Q2 = 0.24) to separate survivors and non-survivors. Oxygen saturation level, loss of consciousness, and chronic kidney disease (CKD) were the top mortality predictors. Correlation analysis showed different correlation patterns among predictors for each non-survivor and survivor cohort separately. The main prediction model was verified using other ML-based analyses with a high area under the curve (AUC) (0.81-0.93) and specificity (0.94-0.99). The obtained data revealed that the mortality prediction model can be different for males and females with diverse predictors. Patients were classified into four clusters of mortality risk and identified the patients at the highest risk of mortality, which accentuated the most significant predictors correlating with mortality. Conclusion: An ML model for predicting mortality among hospitalized COVID-19 patients was developed considering the interactions between factors that may reduce the complexity of clinical decision-making processes. The most predictive factors related to patient mortality were identified by assessing and classifying patients into different groups based on their sex and mortality risk (low-, moderate-, and high-risk groups).

5.
Heliyon ; 9(3): e14146, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36915529

ABSTRACT

Objectives: The present study aimed to investigate the effect of co-exposure to heat and psychological stressors on testicular tissue as one of the major male reproductive organs in rats. Methods: Forty adult male Wistar rats were divided into four groups of 10 animals each. The first group was exposed to heat stress (Temperature Humidity Index: 57.75 ± 3), the second group was exposed to three psychological stressors including strobe light ultrasonic sound, and tilting cage, and the third group was co-exposed to both heat and psychological stress daily. The order of exposure to various psychological stressors was randomized. Following the last day of the 40 -day exposure, the rats were euthanized and their testicular tissues were fixed in Bouin's solution. Moreover, a tissue processor, a microtome as well as hematoxylin, and eosin staining were used for tissue preparation. Results: The co-exposure to psychological and heat stress can cause negative testis histopathological changes including spermatid retention, degeneration of round spermatids and spermatocytes, degeneration and depletion of elongated Spermatid, Sertoli cell status, tubular degeneration/atrophy, Leydig cell atrophy, tubular dilatation, re-tubular dilation, and sclerosis status in a number of rats. Moreover, the histopathological changes were higher in the group exposed to heat stress compared with those exposed to psychological stress. Conclusions: Although exposure to either stressor alone can affect testicular tissue as part of the reproductive system, co-exposure to both stressors may result in an increased risk of adverse effects on testicular tissue.

6.
Prog Biophys Mol Biol ; 176: 16-24, 2022 12.
Article in English | MEDLINE | ID: mdl-35863475

ABSTRACT

Techniques used in assisted reproductive technology such as In-Vitro- Fertilization (IVF) process, often only replicate the biomechanical environment for embryo. Despite its importance, the biomechanics of the Oviduct tissue that is usually called Fallopian Tube in Human, the natural site of fertilization, has not been replicated nor sufficiently studied. This work studies the time-independent and time-dependent biomechanics of the oviduct tissue by realizing a viscoelastic model that accurately fit on the experimental indentation data collected on the mucosal epithelial lining of the oviduct tissue of rats. Nano-scale experiments with varying indentation rates ranging from 0.3 to 8 µms were conducted using atomic force microscopy (AFM) resulting in instantaneous elastic modulus ranging from 0.86 MPa to 6.46 MPa correspondingly. This result showed strong time dependency of the mechanical properties of the oviduct. An improved viscoelastic equation based on the fractional viscoelastic model was proposed. This modified relation successfully captured all the experimental data found at different rates (R2 > 0.8). Using the proposed model, the pure elasticity of the oviduct (i.e., about 317.2 kPa) and the viscoelastic parameters were found.


Subject(s)
Fertilization in Vitro , Oviducts , Female , Animals , Humans , Rats , Viscosity , Elasticity , Fertilization
7.
Heat Mass Transf ; 58(6): 1029-1039, 2022.
Article in English | MEDLINE | ID: mdl-34848928

ABSTRACT

In this study, a more precise and cost-effective method is used for studying the drug delivery and distribution of magnetic nanoparticles in fluid hyperthermia cancer treatment, and numerical methods are employed to determine the effect of blood circulation on heat transfer and estimate the success of cancer treatment. A combination of numerical, analytical, and experimental researches is being conducted, which illustrates the essential role of numerical methods in medical and biomedical science. Magnetic NanoParticles' distribution and effects of infusion rate on the treatment are also discussed by considering the real distribution of MNPs. To increase accuracy and reduce costs in the in-vitro section, direct cutting and image processing methods are used instead of MRI. Based on the results of this section, with a tenfold increase in the infusion rate (4 µl/min to 40 µl/min), the penetration depth increases by 1 mm, which represents a nearly 17 percent increase. Concentrations of MNPs also decrease significantly at higher infusion rates. The simulations of heat transfer reveal that maximum temperatures occur at the lowest infusion rate (1.25 µl/min), and blood flow also has a significant effect on heat transfer. With an increase in the infusion rate, necrosis tissue recedes from the tumor center and approaches the border between the tumor and healthy tissue. Results also show that, in lower MNPs' concentrations, higher infusion rates result in better treatment even though minimum infusion rates are suggested to be the best rates to facilitate distribution and treatment.

8.
Toxicol Rep ; 8: 1948-1954, 2021.
Article in English | MEDLINE | ID: mdl-34917486

ABSTRACT

The present study aims to investigate the effects of co-exposure to heat and psychological stress on sperm DNA and semen parameters among male rats. The study was conducted on 40 healthy adult male Wistar rats. The rats were randomly categorized into four groups of same size consisting of a control group, a heat stress, psychological and co-exposure groups. The heat stress group was exposed to a temperature of 36 °C at 20% relative humidity. The psychological stress exposure group was subjected to three stressors including exposure to strobe light, noise and tilting cage. According the results,the co-exposure group had lower mean sperm parameters including sperm count (17.22 ± 4.22 106/ml), motility (42.63 ± 12.95 %), viability (48.50 ± 23.25 %), normal morphology (56 ± 7.5%), progressive motility (11.61 ± 7.81%), non-progressive motility (31.18 ± 7.77%), curvilinear velocity (24.11 ± 3.81 µm/s) and straight-line velocity (3.2 ± 1.4 µm/s) when compared with those of the other groups (P = 0.001). Mean sperm immobility (57.36 ± 12.95%) and non-progressive motility (37.93 ± 11.15%) in the co-exposure group was higher compared to the other groups (P = 0.001 and P = 0.333, respectively). Assessment of damage to sperm DNA revealed that the heat exposure group had a higher percentage of sperm DNA damage (9.44 ± 6.80 %) compared to others (P = 0.185). In case of all of exposure scenario, the chance that the semen quality decreased compared to the control group has been increased. In general the combined stress had a greater significant effect on sperm parameters compared to other exposure groups, except for DNA damage.

9.
Iran J Basic Med Sci ; 24(4): 537-544, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34094037

ABSTRACT

OBJECTIVES: Immune checkpoint expression on tumor-infiltrating lymphocytes (TILs) has a correlation with the outcome of neoadjuvant chemotherapy (NAC) in breast cancer. However, the reciprocal effect of these regimens on the quality and quantity of immune checkpoints has hitherto not been addressed. We aimed to evaluate the impact of three NAC regimens on TILs and immune checkpoints in a murine triple-negative breast cancer model. MATERIALS AND METHODS: Syngeneic model of locally-advanced breast cancer was established in immunocompetent mice using a 4T1 cell line. Tumor-bearing animals were treated with human-equivalent dosages of doxorubicin, paclitaxel, paclitaxel and carboplatin combination, and placebo. Infiltration of CD3+, CD8+, and FoxP3+ cells into the tumor was assessed by immunohistochemistry. Expression of immune checkpoints, including PD-1, CTLA-4, and TIM-3, was evaluated by real-time PCR. RESULTS: Doxorubicin led to a significant (P<0.01) increase in the percentage of the stromal infiltrating CD3+ and CD8+ lymphocytes. Doxorubicin also suppressed significantly (P<0.05) the relative expression of PD-1 compared with the placebo. PD-1 expression was significantly (P<0.05) lower in the group treated with paclitaxel and carboplatin combination as compared with the placebo. The relative expression of TIM-3 was significantly (P<0.05) suppressed in doxorubicin-treated mice in comparison with other interventions. CONCLUSION: Our findings hypothesize that NAC with doxorubicin may potentiate antitumor immunity not merely by recruitment of TILs, but via down-regulation of PD-1 and TIM-3 checkpoints. Carboplatin-containing NAC may suppress PD-1 as well.

10.
Int J Reprod Biomed ; 19(11): 1015-1024, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34977459

ABSTRACT

BACKGROUND: Advances in recombinant DNA technology led to the development of recombinant follitropin alfa. Recombinant human follicle-stimulating hormone products are used to stimulate follicular maturation. OBJECTIVE: To compare the efficacy and safety of a biosimilar-candidate recombinant human follicle-stimulating hormone (Cinnal-fⓇ; CinnaGen, Iran) with the reference product (Gonal-fⓇ; Merck Serono, Germany) in women undergoing ovarian stimulation for intracytoplasmic sperm injection (ICSI). MATERIALS AND METHODS: In this randomized controlled trial, a total sample size of 200 women (age < 35 yr, candidate for ICSI) was calculated. Participants began a pituitary downregulation protocol with buserelin. They received 150 IU daily of either Cinnal-fⓇ or Gonal-fⓇ from the second day of their cycle. The primary outcome of the study was the percentage of metaphase II (MII) oocytes. The secondary outcomes included the number and quality of oocytes retrieved, duration of stimulation, fertilization rate, embryo quality, the number of clinical and ongoing pregnancies, and the incidence of ovarian hyperstimulation syndrome (as an important safety marker). RESULTS: A total of 208 women were enrolled, of whom, 200 completed the study period. Ovarian stimulation with Cinnal-fⓇ resulted in a comparable percentage of MII oocytes as with Gonal-fⓇ (78.64% vs 80.02%, respectively; p = 0.81). No statistically significant difference was seen in the secondary outcomes between the groups. CONCLUSION: Cinnal-fⓇ proved non-inferior to Gonal-fⓇ, based on the percentage of MII oocytes in women aged < 35 yr undergoing ICSI. Our findings confirm that the efficacy and safety profiles of Cinnal-fⓇ and Gonal-fⓇ are similar.

11.
Iran J Pharm Res ; 19(2): 371-382, 2020.
Article in English | MEDLINE | ID: mdl-33224244

ABSTRACT

The successful therapy strategy of gastric cancer is defined as devastating the cancerous cells without exposing systematic toxicity and undesirable side effects. One strategy to overcome cancer treatment related difficulties could be combination therapy with natural products with anticancer drugs to introduce effective antitumor effects in addition to reduce undesirable side effects. In this regard, different extracts of mulberry leaf, isoquercetin and rutin as the extracted flavonoids from Morus alba, mulberry, in single dose as well as in combination with cisplatin against gastric cancer cell line were applied. This innovative treatment led to cytotoxic effect on gastric cancer cells in a synergistic manner. The findings anticipated that these herbal products have exceptional potential for future gastric cancer investigations and therapy.

12.
AAPS PharmSciTech ; 21(5): 166, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32504144

ABSTRACT

Our aim in this study was to clarify the combination anticancer effect of Noscapine (Nos) loaded in a polymeric nanocarrier with Doxorubicin (Dox) on breast cancer cells. Nanoprecipitation method was used to prepare methoxy polyethylene glycol (mPEG), poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) containing Nos. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to characterize the prepared Nos NPs. The anticancer activity of Nos NPs alone and in combination with Dox was assessed on 4T1 breast cancer cell line and in mice model. Spherical-shaped Nos NPs were prepared, with size of 101 ± 4.80 nm and zeta potential of - 15.40 ± 1 mV. Fourier transform infrared (FTIR) spectroscopy results demonstrated that Nos chemical structure was kept stable during preparation process. However, differential scanning calorimetric (DSC) thermogram proved that crystalline state of Nos changed to amorphous state in Nos NPs. The entrapment efficacy % (EE%) and drug loading % (DL%) of Nos NPs were about 87.20 ± 3.50% and 12.50 ± 2.30%, respectively. Synergistic anticancer effects of Nos both in free form (in hydrochloride form, Nos HCl) and Nos NPs form with Dox hydrochloride (Dox HCl) were observed on 4T1 cells. Combination of Nos NPs and Dox HCl inhibited tumor growth (68.50%) in mice more efficiently than Nos NPs (55.10%) and Dox HCl (32%) alone. Immunohistochemical (IHC) analysis of the tumor tissues confirmed antiangiogenic effect of Nos NPs. The findings highlighted efficacy of Nos NPs alone and in combination with Dox HCl on breast cancer tumors.


Subject(s)
Breast Neoplasms/drug therapy , Doxorubicin/chemistry , Nanoparticles/chemistry , Noscapine/chemistry , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred BALB C
13.
Adv Pharm Bull ; 10(2): 323-328, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32373503

ABSTRACT

Purpose: Triple-negative breast cancer (TNBC) is specified by high vascularity and repetitious metastasis. Although several studies have indicated that angiogenesis has an important role in invasive breast cancer, a suitable model of TNBC that can show the exact onset of angiogenesis factors still needs to be developed. The purpose of this study is to determine the expression level of angiogenesis factors in different clinical stages of the 4T1 tumor as TNBC mouse model. Methods: Twenty mice were injected by the 4T1 cell line, and four mice selected as healthy controls. Following by tumor induction, the mice were randomly put into four groups, each contains four mice. Once the tumor volume reached to the early stage (<100 mm3), intermediate stage (100-300 mm3), advanced stage (300-500 mm3), and end stage (>500 mm3), they were removed by surgery. Then, the expression levels of Hif1α, VEGFR1, and VEGFR2 genes, as well as tumor markers of VEGF, bFGF and CD31, were evaluated by qPCR and immunohistochemistry (IHC) respectively. The statistical analysis was done by SPSS version 16. Results: TNBC tumors were confirmed and multi-foci metastasis in the lung were seen. The mRNA and protein expression levels of the angiogenesis factors increased in the early stage and as the tumor grew, their expression level enhanced dramatically. Conclusion: The 4T1 syngeneic mouse tumor may serve as an appropriate TNBC model for further investigation of the angiogenesis and therapies. Moreover, angiogenesis factors are induced before the advanced stage, and anti-angiogenesis therapy is necessary to be considered at the first line of treatment in TBNC.

14.
J Med Signals Sens ; 9(1): 15-23, 2019.
Article in English | MEDLINE | ID: mdl-30967986

ABSTRACT

BACKGROUND: To predict the behavior of biological systems, mathematical models of biological systems have been shown to be useful. In particular, mathematical models of tumor-immune system interactions have demonstrated promising results in prediction of different behaviors of tumor against the immune system. METHODS: This study aimed at the introduction of a new model of tumor-immune system interaction, which includes tumor and immune cells as well as myeloid-derived suppressor cells (MDSCs). MDSCs are immune suppressor cells that help the tumor cells to escape the immune system. The structure of this model is agent-based which makes possible to investigate each component as a separate agent. Moreover, in this model, the effect of low dose 5-fluorouracil (5-FU) on MDSCs depletion was considered. RESULTS: Based on the findings of this study, MDSCs had suppressive effect on increment of immune cell number which consequently result in tumor cells escape the immune cells. It has also been demonstrated that low-dose 5-FU could help immune system eliminate the tumor cells through MDSCs depletion. CONCLUSION: Using this new agent-based model, multiple injection of low-dose 5-FU could eliminate MDSCs and therefore might have the potential to be considered in treatment of cancers.

15.
Urol J ; 16(4): 375-379, 2019 08 18.
Article in English | MEDLINE | ID: mdl-30882179

ABSTRACT

PURPOSE: This study is aimed to evaluate the effects of opium dependency on testicular tissue in a rat model. METHODS: Thirty-two Wistar male rats (aged 30 days and weighing 200-250 grams) were randomized into two groups. Group A, consisting of 16 rats, received dissolved oral opium tablets in drinking water for 45 days, whereas group B (control group) consisted of 16 rats that received opium-free water. After 45 days vertical and horizontal diameters of testis, number of seminiferous tubules, mean seminiferous tubule diameter, number of germ cells, height of germinal epithelium, percentage of degenerating Leydig and germ cells and glutathione density of testicular tissue (µmol/g of tissue) were compared between study groups. RESULTS: Morphological evaluation of testicular tissue revealed a significantly higher percentage of degenerating Leydig and germ cells in the treated group compared to control group. (10.08 ± 0.351 vs. 1.83 ± 0.88, 4.50 ± 0.769 vs. 0.607 ± 0.118, respectively) (P-value<0.001 for each) Interestingly, vertical and horizontal diameter of testis, the average number of germ cells, height of germinal epithelium and number of seminiferous tubules, were significantly higher in the treated group compared to control group. Seminiferous tubule diameter and glutathione density of testicular tissue were not statistically significantly different between the groups. CONCLUSIONS: Applying a rat model, we noted that opium has a substantial effect on testicular structure and function. A significantly higher proportion of Leydig and germ cells were degenerated in treated rats despite an increase in the average number of seminiferous tubules and germ cells. These findings support the hypothesis that opium consumption adversely affects male fertility.


Subject(s)
Opioid-Related Disorders/complications , Testis/drug effects , Testis/pathology , Animals , Disease Models, Animal , Male , Random Allocation , Rats , Rats, Wistar
16.
Med Hypotheses ; 124: 91-94, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30798926

ABSTRACT

Recently, magnetic Hyperthermia is one of the promising methods for cancer treatments. In this method by applying magnetic fields and generating heat, cancerous tissues are eliminated. The degree and pattern of generated heat in cancerous and adjacent non-cancerous tissues plays an important role on the outcome of the treatment. it is mainly affected by diffusion and distribution pattern of magnetic nanoparticles within the cancerous and non-cancerous tissues. Study the diffusion and distribution patterns of magnetic nanoparticle in vivo is difficult and costly in many cases and in some cases evaluating the amount of generated heat at cancer site is almost impossible. In vitro models for cancer tissues are alternatives for in vivo models. However, usual in vitro models could not resembling all the characteristics of a cancer tumor. In this hypothesis we propose that using 3D printers can provide a platform to fabricate a personalized in vitro cancer model which could simulate the most important features of the cancerous tissues (including shape and vascular network) and can be used to study magnetic hyperthermia in a simulated media of compatible to in vivo conditions.


Subject(s)
Hyperthermia, Induced/methods , Neoplasms/physiopathology , Neoplasms/therapy , Printing, Three-Dimensional , Cell Line, Tumor , Diffusion , Humans , Imaging, Three-Dimensional , Lasers , Magnetic Fields , Magnetite Nanoparticles , Models, Theoretical
17.
Adv Clin Exp Med ; 28(2): 151-157, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30411549

ABSTRACT

BACKGROUND: Aprotinin is a nonspecific serine protease inhibitor, which can inhibit plasminogen-plasmin system and matrix metalloproteinases. Aprotinin has been investigated as an antitumor agent. However, its antineoplastic effects on breast cancer (BC) have not been investigated yet. OBJECTIVES: The objective of this study was to assess the inhibitory effects of aprotinin on human BC cell lines. We assessed the effects of aprotinin on local invasion and survival of human BC cell lines MDA-MB-231, SK-BR-3 and MCF-7 in vitro. MATERIAL AND METHODS: CHEMICON cell invasion assay kit was used to assess local invasion, and (3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction (MTT) assay was used to determine the antiproliferative activity of aprotinin. Human dermal fibroblast (HDF-1) cell line was used as control normal cells. RESULTS: Cancer cell lines showed more invasion characteristics compared to HDF-1. Aprotinin significantly decreased the invasiveness of MDA-MB-231 in concentrations of 1 trypsin inhibitor unit (TIU)/mL, 1.3 TIU/mL and 1.7 TIU/mL in comparison with the untreated group (analysis of variance (ANOVA) p < 0.001). Treatment of SK-BR-3 with 1.3 TIU/mL aprotinin caused no significant reduction in invasiveness (p = 0.06). Treatment with different concentrations of aprotinin significantly decreased the surviving fraction and inhibited the growth of all cell lines tested in this study (analysis of variance (ANOVA) p < 0.001). Compared to cancer cell lines, normal HDF-1 cell line showed less sensitivity to antiproliferative effects of aprotinin, both in low and high doses. CONCLUSIONS: Aprotinin significantly inhibited the growth of human breast cancer cell lines MDA-MB-231, SK-BR-3 and MCF-7, and normal fibroblast cell line HDF-1. The growth inhibitory effect was more dominant in cancer cell lines. Inhibition of local invasion by aprotinin was significant only in the case of MDA-MB-231. Future molecular studies could shed further lights on mechanisms underlying antineoplastic effects of aprotinin and its potential therapeutic effects.


Subject(s)
Antineoplastic Agents/pharmacology , Aprotinin/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Serine Proteinase Inhibitors/pharmacology , Cell Line , Cell Line, Tumor , Cell Proliferation , Humans , Neoplasm Invasiveness
18.
Iran J Basic Med Sci ; 21(7): 678-681, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30140405

ABSTRACT

OBJECTIVES: Gastric cancer is the third leading cause of cancer-related death worldwide. The overall survival rate of patients is poor because gastric cancers are usually diagnosed at the late stages. Therefore, further research is needed and appropriate research tools are required to develop novel therapeutic approaches. MATERIALS AND METHODS: Eight female athymic nude mice with a C57BL/6 background were used in this study. AGS cells were inoculated into the flank. The tumor volumes were calculated and growth curves were drawn. When the volume of the tumors reached 1000 mm3, the animals were humanely euthanized with CO2 gas. After harvesting, tumors were analyzed with Hematoxylin and Eosin (H&E) and immunohistochemistry (IHC). A pathologist confirmed tumor entity through H&E staining. Tumors were evaluated for expression of HER-2, P53, Ki-67, CD34, cytokeratin 8 (CK8), vimentin, estrogen receptor (ER), and progesterone receptor (PR) utilizing immunohistochemistry. RESULTS: The tumor take rate was 62.5%, mean doubling time was 40.984 d, and the latency period was 30.62 days. The H&E staining results showed highly malignant hyperchromatin epithelial cells. IHC assessment showed the mutation status of P53 gene. The expression score of the CK8 protein in the tumor cells was +3. Vimentin protein was not expressed and changes in mesenchymal phenotype were not observed. Ki-67 IHC indicated that the proliferation rate was >43% and angiogenesis was defined as high MVD. CONCLUSION: The respective AGS xenograft model provides an opportunity to understand the pattern of tumor growth as well as to evaluate new gastric cancer therapies in in vivo studies.

19.
Arab J Gastroenterol ; 19(2): 65-70, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29960902

ABSTRACT

BACKGROUND AND STUDY AIMS: Homeobox-containing genes are composed of a group of regulatory genes encoding transcription factors involved in the control of developmental processes. The homeodomain proteins could activate or repress the expression of downstream target genes. This study was conducted to in vivo identify the potential target gene(s) of TGIF2LX in colorectal adenocarcinoma. METHODS: A human colorectal adenocarcinoma cell line, SW48, was transfected with the recombinant pEGFPN1-TGIF2LX. The cells were injected subcutaneously into the flank of the three groups of 6-week-old female athymic C56BL/6 nude mice (n = 6 per group). The transcript profiles in the developed tumours were investigated using the cDNA amplified fragment length polymorphism (cDNA-AFLP) technique. RESULTS: The real-time RT-PCR and DNA sequencing data for the identified genes indicated that the N-terminal domain-interacting receptor 1 (Nir1) gene was suppressed whereas Nir2 and fragile histidine triad (FHIT) genes were upregulated followed by the overexpression of TGIF2LX gene. CONCLUSION: Downregulation of Nir1 and upregulation of Nir2 and FHIT genes due to the overexpression of TGIF2LX suggests that the gene plays an important role as a suppressor in colorectal adenocarcinoma.


Subject(s)
Adenocarcinoma/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Homeodomain Proteins/genetics , Acid Anhydride Hydrolases/genetics , Amplified Fragment Length Polymorphism Analysis , Animals , Calcium-Binding Proteins/genetics , Cell Line, Tumor , DNA, Complementary/analysis , Down-Regulation , Eye Proteins/genetics , Female , Humans , Membrane Proteins/genetics , Mice , Neoplasm Proteins/genetics , Transcriptome , Up-Regulation
20.
Cell Mol Biol (Noisy-le-grand) ; 64(9): 1718, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-30030956

ABSTRACT

Hearing impairment (HI) caused by mutations in the connexin-26 gene (GJB2) accounts for the majority of cases with inherited, nonsyndromic sensorineural hearing loss. Due to the illegality of the abortion of deaf fetuses in Islamic countries, preimplantation genetic diagnosis (PGD) is a possible solution for afflicted families to have a healthy offspring. This study describes the first use of PGD for GJB2 associated non-syndromic deafness in Iran. GJB2 donor splicing site IVS1+1G>A mutation analysis was performed using Sanger sequencing for a total of 71 Iranian families with at least 1 deaf child diagnosed with non-syndromic deafness. In Vitro Fertilization (IVF) was performed, followed by PGD for a cousin couple with a 50% chance of having an affected child. Bi-allelic pathogenic mutations were found in a total of 12 families (~17 %); of which a couple was a PGD volunteer. The deaf woman in this family was homozygous and her husband was a carrier of the IVS1+1G>A gene mutation. Among 8 biopsied embryos, two healthy embryos were implanted which resulted in a single pregnancy and subsequent birth of a healthy baby boy. This is the first report of a successful application of PGD for hearing loss in Iran. Having a baby with a severe hearing impairment often imposes families with long-term disease burden and heavy therapy costs. Today PGD has provided an opportunity for high-risk individuals to avoid the birth of a deaf child.


Subject(s)
Connexins/genetics , Hearing Loss/diagnosis , Reproductive Techniques, Assisted , Blastomeres/metabolism , Connexin 26 , DNA/isolation & purification , DNA/metabolism , DNA Mutational Analysis , Fertilization in Vitro , Haplotypes , Hearing Loss/genetics , Humans , Iran , Multiplex Polymerase Chain Reaction , Preimplantation Diagnosis , Tandem Repeat Sequences/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...