Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Environ Qual ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688861

ABSTRACT

Phosphorus (P) and metal accumulation in manured agricultural soils and subsequent losses to waterways have been extensively studied; however, the magnitudes and the factors governing their losses during spring snowmelt flooding are less known. We examined the P and metal release from long-term manured soil to floodwater under simulated snowmelt flooding with recent manure additions. Intact soil columns collected from field plots located in Randolph, Southern Manitoba, 2 weeks after liquid swine manure treatments (surface-applied, injected, or control with no recent manure addition) were flooded and incubated for 8 weeks at 4 ± 1°C to simulate snowmelt conditions. Floodwater (syringe filtered through 0.45 µm) and soil porewater (extracted using Rhizon-Mom samplers) samples were periodically extracted and analyzed for dissolved reactive phosphorus (DRP), pH, zinc (Zn), manganese (Mn), iron (Fe), magnesium (Mg), calcium (Ca), and arsenic (As). Mean floodwater DRP concentrations (mg L-1) for manure injected (2.0 ± 0.26), surface-applied (2.6 ± 0.26), and control (2.2 ± 0.26) treatments did not differ significantly. Despite manure application, DRP loss to floodwater did not significantly increase compared to the control, possibly due to the elevated residual soil P at this site from the long-term manure use. At the end of simulated flooding, the DRP concentrations increased by 1.5-fold and 5-fold in porewater and floodwater, respectively. Metal(loid) concentrations were not affected by manure treatments in general, except for Zn and Mg on certain days. Unlike DRP, where porewater and floodwater concentrations increased with time, metalloid concentration in porewater and floodwater did not show consistent trends with flooding time.

2.
J Environ Qual ; 53(3): 314-326, 2024.
Article in English | MEDLINE | ID: mdl-38453693

ABSTRACT

Snowmelt runoff is a dominant pathway of phosphorus (P) losses from agricultural lands in cold climatic regions. Soil amendments effectively reduce P losses from soils by converting P to less soluble forms; however, changes in P speciation in cold climatic regions with fall-applied amendments have not been investigated. This study evaluated P composition in soils from a manured field with fall-amended alum (Al2(SO4)3·18H2O), gypsum (CaSO4·2H2O), or Epsom salt (MgSO4·7H2O) using three complementary methods: sequential P fractionation, scanning electron microscopy with energy-dispersive X-rays (SEM-EDX) spectroscopy, and P K-edge X-ray absorption near-edge structure spectroscopy (XANES). Plots were established in an annual crop field in southern Manitoba, Canada, with unamended and amended (2.5 Mg ha-1) treatments having four replicates in 2020 fall. Soil samples (0-10 cm) taken from each plot soon after spring snowmelt in 2021 were subjected to P fractionation. A composite soil sample for each treatment was analyzed using SEM-EDX and XANES. Alum- and Epsom salt-treated soils had significantly greater residual P fraction with a higher proportion of apatite-like P and a correspondingly lower proportion of P sorbed to calcite (CaCO3) than unamended and gypsum-amended soils. Backscattered electron imaging of SEM-EDX revealed that alum- and Epsom salt-amended treatments had P-enriched microsites frequently associated with aluminum (Al), iron (Fe), magnesium (Mg), and calcium (Ca), which was not observed in other treatments. Induced precipitation of apatite-like species may have been responsible for reduced P loss to snowmelt previously reported with fall application of amendments.


Subject(s)
Alum Compounds , Calcium Sulfate , Phosphorus , Soil , Calcium Sulfate/chemistry , Calcium Sulfate/analysis , Soil/chemistry , Phosphorus/analysis , Phosphorus/chemistry , Alum Compounds/chemistry , Fertilizers/analysis , Manure/analysis , Agriculture/methods
3.
Sci Total Environ ; 892: 164387, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37257623

ABSTRACT

Veterinary antimicrobials (VAs) widely used in intensive livestock production are excreted in livestock manure. Manure is an essential component in agriculture for recycling critical nutrients and improving overall soil health. However, manure application on agricultural lands increases the risk of contaminating the ecosystem with antimicrobials. Antimicrobials in manure-amended soils can affect ecosystem functioning via their negative effect on biogeochemical cycles and increase human exposure. Also, the release of antimicrobials to the broader environment, including that arising because of offsite transport, is linked to the global increase in antibiotic resistance in bacteria. Antibiotic resistance is an emerging global threat to human health, particularly the pathogenic bacteria resistant to the main antimicrobial classes in use. Therefore, there is a need to review current literature to enhance our understanding of the fate of these contaminants across agricultural landscapes. This review focuses on (1) a detailed discussion of sorption mechanisms by exploring the structural attributes of antimicrobials, (2) specific sorption interactions with active adsorbent components in the soil as these comprehensive data are important to identify the sorption strengths of antimicrobials which control their fate in the ecosystem, and (3) the effects of on-farm management practices on VA transport and is focused on manure amendment and tillage practices. The key facts identified in this review are critical to identifying sustainable on-farm management practices to enhance the productivity of arable agricultural lands in Canada and across the globe while minimizing the risk of offsite transport of VAs. Further, the research gaps highlighted in the relevant sections are important to designing future research in Canada and globally under similar to variable land/farm management practices.


Subject(s)
Anti-Infective Agents , Soil , Humans , Soil/chemistry , Manure , Ecosystem , Grassland , Canada , Bacteria , Anti-Bacterial Agents
4.
Int J Phytoremediation ; 20(2): 161-167, 2018 Jan 28.
Article in English | MEDLINE | ID: mdl-28613080

ABSTRACT

This study examined the effectiveness of a wetland system for phytoremediation of biosolids from an end-of-life municipal lagoon. The microcosm experiment tested the effects of one vs. two harvests of cattail per growth cycle in biosolids without (PB) or with (PBS) the addition of soil on phytoremediation. Cattail (Typha latifolia) seedlings were transplanted into pots containing 4.5 kg (dry wt.) of biosolids, above which a 10-cm deep water column was maintained. Results showed that two harvests per growth cycle significantly increased N and P phytoextraction relative to a single harvest. Overall, the three cycles of cattail removed ∼3.7% of N which was originally present in the biosolids and ∼2% of the total P content. Phytoextraction rates are expected to be higher under field conditions where biomass yields are much higher than those obtained under growth room conditions in this study. These results indicate that wetland-based phytoremediation can effectively clean up nutrients from biosolids, and therefore presents a potential alternative to the spreading of biosolids on agricultural land, which may not be readily available in some communities. Phytoextraction rates of trace elements, however, were much lower (0.02-0.17%). Nonetheless, trace element concentrations were not high enough to be of significant concern.


Subject(s)
Biodegradation, Environmental , Soil Pollutants , Typhaceae , Wetlands , Biomass , Trace Elements , Water
5.
Article in English | MEDLINE | ID: mdl-29215973

ABSTRACT

Dissipation of antimicrobial resistance genes (ARG) during composting of cattle manure generated through fortification versus administration of antimicrobials in feed was compared. Manure was collected from cattle fed diets containing (kg-1) dry matter (DM): (1) 44 mg chlortetracycline (CTC), (2) a mixture of 44 mg each of chlortetracycline and sulfamethazine (CTCSMZ), (3) 11 mg tylosin (TYL) or (4) Control, no antimicrobials. Manures were composted for 30 d with a single mixing after 16 d to generate the second heating cycle. Quantitative PCR (qPCR) was used to measure 16S rDNA and tetracycline (tet), erythromycin (erm) and sulfamethazine (sul) genes. Temperature peaks ranged from 48 to 68°C across treatments in the first composting cycle, but except for the control, did not exceed 55°C in the second cycle. Copy numbers of 16S rDNA decreased (P < 0.05) during composting, but were not altered by antimcrobials. Except tet(L), all ARG decreased by 0.1-1.6 log10 g DM-1 in the first cycle, but some genes (tet[B], tet[L], erm[F], erm[X]) increased (P < 0.05) by 1.0-3.1 log10 g DM-1 in the second. During composting, levels of tet(M) and tet(W) in CTC, erm(A), erm(B) and erm(X) in TYL, and sul(1) in CTCSMZ remained higher (P < 0.05) in fed than fortified treatments. The dissipation of ARG during composting of manure fortified with antimicrobials differs from manure generated by cattle that are administered antimicrobials in feed, and does not always align with the dissipation of antimicrobial residues.


Subject(s)
Anti-Infective Agents/administration & dosage , Composting/methods , Drug Resistance, Microbial/genetics , Genes, Bacterial , Manure/microbiology , Administration, Oral , Animals , Cattle , Soil Microbiology
6.
J Environ Sci Health B ; 52(8): 564-569, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28494194

ABSTRACT

Mineralization studies of natural steroid hormones (e.g., 17ß-estradiol, E2) are performed in environmental incubators, usually under a constant temperature such as 20°C. In this paper, we present a microcosm protocol that quantified the mineralization of E2 in soils under field temperatures. The nine agricultural soils tested had a wide range of soil organic carbon (1.1 to 5.2%) and clay (9 to 57%) contents. The calculated time over which half of the applied E2 was mineralized (E2-½) ranged from 299 to 910 d, and total E2 mineralization at 48 d (E2-TOT48) ranged from 4 to 13%. In subsequent laboratory incubations, the same soils were incubated under a constant temperature of 20°C, as well as under cyclic temperatures of 14.5°C (14 h) and 11.5°C (10h), which was within the temperature extremes observed in the field microcosms. E2-½ ranged from 157 to 686 d at 20°C and from 103 to 608 d at the cyclic temperatures, with the E2-TOT48 ranging from 6 to 21% at 20°C and from 7 to 30% under cyclic temperatures. Despite the overall 6.75°C lower mean temperatures under the cyclic versus constant temperatures, E2 mineralization was stimulated by the temperature cycles in three soils. Regardless of the incubation, the same loamy sand soil always showed larger E2 mineralization than the other eight soils and this loamy sand soil also had the smallest E2 sorption. Current modeling approaches do not take into consideration the effects of temperature fluctuations in the field because the input parameters used to describe degradation are derived from laboratory incubations at a constant temperature. Across the eight soils, E2-½ was on average 1.7 times larger and E2-TOT48 was on average 0.8 times smaller under field temperatures than under a constant 20°C. Hence, we conclude that incubations at 20°C give a reasonable representation of E2 mineralization occurring under field conditions to be expected in a typical Prairie summer season.


Subject(s)
Estradiol/chemistry , Soil Pollutants/chemistry , Agriculture , Aluminum Silicates , Carbon/analysis , Clay , Laboratories , Minerals , Soil/chemistry , Soil Pollutants/analysis , Temperature
7.
Sci Total Environ ; 575: 813-819, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27693149

ABSTRACT

Approximately 20% of the 600 First Nations reserves across Canada are under a drinking water advisory, often due to unacceptable levels of bacteria. In this study, we detected fecal bacteria at an alarmingly high frequency in drinking water sources in a fly-in First Nations community, most notably in buckets/drums of homes without running water where Escherichia coli levels ranged from 20 to 62,000CFU/100mL. The water leaving the water treatment plant was free of E. coli and its free residual chlorine concentration (0.67mg/L) was within the range typically observed for treated water in Canada. Water samples from taps in homes served by cisterns, and those sampled from the water truck and community standpipe, always showed unacceptable levels of E. coli (1 to 2100CFU/100mL) and free residual chlorine concentrations below the 0.2mg/L required to prevent bacterial regrowth. Samples from taps in homes served by piped water had lower levels of E. coli (0 to 2CFU/100mL). DNA- and RNA-based 16S rRNA Illumina sequencing demonstrated that piped and cisterns water distribution systems showed an abundance of viable cells of Alphaproteobacteria indicative of biofilm formation in pipes and cisterns. The alpha diversity, based on observed OTUs and three other indices, was lowest in water truck samples that supplied water to the cistern and the low free residual chlorine concentration (0.07mg/L) and predominance of Betaproteobacteria (63% of viable cells) that were immediately detected after the truck had filled up at the water treatment plant was indicative of contamination by particulate matter. Given these findings, First Nation residents living without running water and relying on inadequate water distribution systems are at higher risk of contracting water-born illnesses. We urge all governments in Canada to expand their investments in supporting and sustaining water as a human right in Canada's First Nations communities.


Subject(s)
Drinking Water/microbiology , Escherichia coli/isolation & purification , Water Microbiology , Water Supply/standards , Canada , Humans , Indians, North American , RNA, Ribosomal, 16S , Water Purification/standards
8.
J Environ Qual ; 45(5): 1644-1651, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27695746

ABSTRACT

Land application of manure containing antimicrobials results in the dispersion of the antimicrobials in agro-ecosystems. Dissipation of excreted antimicrobials in seasonally frozen agricultural soils has not been fully characterized under field conditions. This study investigated the field dissipation kinetics of chlortetracycline, sulfamethazine, and tylosin over a 10-mo period after fall application of manure from cattle () administered 44 mg chlortetracycline (chlortetracycline treatment [CTC]), 44 mg each of chlortetracycline and sulfamethazine (CTCSMZ), or 11 mg tylosin per kg feed daily. Antimicrobial concentrations in manured soil reflected the same relative concentrations in manure: chlortetracycline > sulfamethazine > tylosin. The first-order dissipation half-life (DT) for chlortetracycline from the CTCSMZ treatment was 77 d during the growing season and 648 d during the nongrowing season when the soil was frozen for an extended period. By comparison, dissipation of chlortetracycline added alone (treatment CTC) did not differ significantly between the two seasons (mean DT, 121 d). During the nongrowing season, chlortetracycline from CTC dissipated faster ( = 0.004) than that from the CTCSMZ treatment, indicating that the presence of sulfamethazine may have altered the dissipation of chlortetracycline. Dissipation kinetics for sulfamethazine and tylosin were not determined due to low detection in the manure-amended soil. Sulfamethazine was detected (up to 16 ± 10 µg kg) throughout the 10-mo monitoring period. Tylosin concentration was ≤11 ± 6.6 µg kg and gradually dissipated. Chlortetracycline was detectable 10 mo after application in the seasonally frozen soil, indicating a risk for residue build-up in the soil and subsequent offsite contamination.


Subject(s)
Anti-Infective Agents/analysis , Manure , Soil Pollutants/analysis , Animals , Anti-Bacterial Agents , Cattle , Freezing , Red Meat , Soil , Tylosin
9.
J Environ Sci Health B ; 51(10): 655-660, 2016 Oct 02.
Article in English | MEDLINE | ID: mdl-27327900

ABSTRACT

Natural steroidal estrogens, such as 17 ß-estradiol (E2), as well as antimicrobials such as doxycycline and norfloxacin, are excreted by humans and hence detected in sewage sludge and biosolid. The disposal of human waste products on agricultural land results in estrogens and antibiotics being detected as mixtures in soils. The objective of this study was to examine microbial respiration and E2 mineralization in sewage sludge, biosolid, and soil in the presence and the absence of doxycycline and norfloxacin. The antimicrobials were applied to the media either alone or in combination at total rates of 4 and 40 mg kg-1, with the 4 mg kg-1 rate being an environmentally relevant concentration. The calculated time that half of the applied E2 was mineralized ranged from 294 to 418 days in sewage sludge, from 721 to 869 days in soil, and from 2,258 to 14,146 days in biosolid. E2 mineralization followed first-order and the presence of antimicrobials had no significant effect on mineralization half-lives, except for some antimicrobial applications to the human waste products. At 189 day, total E2 mineralization was significantly greater in sewage sludge (38 ±0.7%) > soil (23 ±0.7%) > biosolid (3 ±0.7%), while total respiration was significantly greater in biosolid (1,258 mg CO2) > sewage sludge (253 mg CO2) ≥ soil (131 mg CO2). Strong sorption of E2 to the organic fraction in biosolid may have resulted in reduced E2 mineralization despite the high microbial activity in this media. Total E2 mineralization at 189 day was not significantly influenced by the presence of doxycycline and/or norfloxacin in the media. Antimicrobial additions also did not significantly influence total respiration in media, except that total CO2 respiration at 189 day was significantly greater for biosolid with 40 mg kg-1 doxycycline added, relative to biosolid without antimicrobials. We conclude that it is unlikely for doxycycline and norfloxacin, or their mixtures, to have a significant effect on E2 mineralization in human waste products and soil. However, the potential for E2 to be persistent in biosolids, with and without the presence of antimicrobials, is posing a challenge for biosolid disposal to agricultural lands.


Subject(s)
Anti-Infective Agents/pharmacology , Estradiol/metabolism , Microbiota/drug effects , Sewage/microbiology , Soil Pollutants/metabolism , Soil/chemistry , Waste Products/analysis , Agriculture , Anti-Infective Agents/analysis , Estradiol/analysis , Feces/chemistry , Humans , Manitoba , Sewage/analysis , Soil Pollutants/analysis , Urine/chemistry
10.
J Environ Qual ; 45(2): 503-10, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27065397

ABSTRACT

Fortification of manure with antimicrobials is one approach to studying their dissipation. However, fortified antimicrobials may not accurately model dissipation that occurs after antimicrobials have been administered to livestock in feed and excreted in manure. This study examined the dissipation of antimicrobials excreted in manure versus those added directly to manure (fortified). Steers were fed a diet containing (kg feed) (i) 44 mg chlortetracycline, (ii) 44 mg each of chlortetracycline and sulfamethazine, (iii) 11 mg tylosin, and (iv) no antimicrobials (control). Fortified antimicrobial treatments were prepared by adding antimicrobials to control manure. Manure was composted for 30 d, sampled every 2 to 3 d, and analyzed for antimicrobials and compost properties. Antimicrobial dissipation followed first-order kinetics. The dissipation rate constant was significantly greater (based on 95% confidence limit) for excreted (0.29-0.54 d) than for fortified chlortetracycline (0.11-0.13 d). In contrast, dissipation rate constants were significantly greater for fortified sulfamethazine (0.47 d) and tylosin (0.31 d) than when the same antimicrobials were excreted (0.08 and 0.07 d, respectively). On average, 85 to 99% of the initial antimicrobial concentrations in manure were dissipated after 30 d of composting. The degree of dissipation was greater ( < 0.0001) for fortified (99%) than for excreted tylosin (85%). Composting can be used to reduce environmental loading of antimicrobials before field application of beef cattle manure. Dissipation rates of fortified antimicrobials during manure composting may not accurately reflect those of antimicrobials that are consumed and excreted by cattle.


Subject(s)
Anti-Infective Agents/analysis , Composting , Environmental Pollutants/analysis , Manure , Administration, Oral , Animal Feed , Animals , Cattle , Male , Tylosin
11.
J Environ Qual ; 43(2): 549-57, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25602656

ABSTRACT

Veterinary antimicrobials in land-applied manure can move to surface waters via rain or snowmelt runoff, thus increasing their dispersion in agro-environments. This study quantified losses of excreted chlortetracycline, sulfamethazine, and tylosin in simulated rain runoff from surface-applied and soil-incorporated beef cattle ( L.) feedlot manure (60 Mg ha, wet wt.). Antimicrobial concentrations in runoff generally reflected the corresponding concentrations in the manure. Soil incorporation of manure reduced the concentrations of chlortetracycline (from 75 to 12 µg L for a 1:1 mixture of chlortetracycline and sulfamethazine and from 43 to 17 µg L for chlortetracycline alone) and sulfamethazine (from 3.9 to 2.6 µg L) in runoff compared with surface application. However, there was no significant effect of manure application method on tylosin concentration (range, 0.02-0.06 µg L) in runoff. Mass losses, as a percent of the amount applied, for chlortetracycline and sulfamethazine appeared to be independent of their respective soil sorption coefficients. Mass losses of chlortetracycline were significantly reduced with soil incorporation of manure (from 6.5 to 1.7% when applied with sulfamethazine and from 6.5 to 3.5% when applied alone). Mass losses of sulfamethazine (4.8%) and tylosin (0.24%) in runoff were not affected by manure incorporation. Although our results confirm that cattle-excreted veterinary antimicrobials can be removed via surface runoff after field application, the magnitudes of chlortetracycline and sulfamethazine losses were reduced by soil incorporation of manure immediately after application.

SELECTION OF CITATIONS
SEARCH DETAIL
...