Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Biotechnol (NY) ; 25(2): 259-271, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36892731

ABSTRACT

The inorganic part of marine sponges, called Biosilica (BS), presents an osteogenic potential and the ability of consolidating fractures. Moreover, 3D printing technique is highly effective for manufacturing scaffolds for tissue engineering proposals. Thus, the aims of this study were to characterize the 3D rinted scaffolds, to evaluate the biological effects in vitro and to investigate the in vivo response using an experimental model of cranial defects in rats. The physicochemical characteristics of 3D printed BS scaffolds were analyzed by FTIR, EDS, calcium assay, evaluation of mass loss and pH measurement. For in vitro analysis, the MC3T3-E1 and L929 cells viability was evaluated. For the in vivo evaluation, histopathology, morphometrical and immunohistochemistry analyses were performed in a cranial defect in rats. After the incubation, the 3D printed BS scaffolds presented lower values in pH and mass loss over time. Furthermore, the calcium assay showed an increased Ca uptake. The FTIR analysis indicated the characteristic peaks for materials with silica and the EDS analysis demonstrated the main presence of silica. Moreover, 3D printed BS demonstrated an increase in MC3T3-E1 and L929 cell viability in all periods analyzed. In addition, the histological analysis demonstrated no inflammation in days 15 and 45 post-surgery, and regions of newly formed bone were also observed. The immunohistochemistry analysis demonstrated increased Runx-2 and OPG immunostaining. Those findings support that 3D printed BS scaffolds may improve the process of bone repair in a critical bone defect as a result of stimulation of the newly formed bone.


Subject(s)
Porifera , Tissue Scaffolds , Animals , Rats , Tissue Scaffolds/chemistry , Calcium , Porifera/chemistry , Silicon Dioxide , Printing, Three-Dimensional
2.
J Biomed Mater Res B Appl Biomater ; 111(7): 1419-1433, 2023 07.
Article in English | MEDLINE | ID: mdl-36840674

ABSTRACT

Wound dressings are one of the most used treatments for chronic wounds. Moreover, 3D printing has been emerging as a promising strategy for printing 3D printed wound constructs, being able of manufacturing multi layers, with a solid 3D structure. Although all these promising effects of 3D printed wound constructs, there is still few studies and limited understanding of the interaction of these dressings with skin tissue and their effect on the process of skin wound healing. In this context, the aim of this work was to perform a systematic review of the literature to examine the effects of 3D printed wound constructs on the process of skin wound healing in animal models. The articles were selected from three databases following Medical Subject Headings (MeSH) descriptors "3D printing," "skin," "wound," and "in vivo." After the selection, exclusion and inclusion criteria, nine articles were analyzed. This review confirms the significant benefits of using 3D printed wound constructs for skin repair and regeneration. All the used inks demonstrated the ability of mimicking the structure of skin tissue and promoting cell adhesion, proliferation, migration, and mobility. Furthermore, in vivo findings showed full wound closure in most of the studies, with well-organized dermal and epidermal layers.


Subject(s)
Skin , Tissue Engineering , Animals , Models, Animal , Cell Adhesion , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...