Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 7(7): 1880-9, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18606718

ABSTRACT

Signaling through the erbB receptor family of tyrosine kinases contributes to the proliferation, differentiation, migration, and survival of a variety of cell types. Abnormalities in members of this receptor family have been shown to play a role in oncogenesis, thus making them attractive targets for anticancer treatments. PF-00299804 is a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor currently in phase I clinical trials. PF-00299804 is believed to irreversibly inhibit erbB tyrosine kinase activity through binding at the ATP site and covalent modification of nucleophilic cysteine residues in the catalytic domains of erbB family members. Oral administration of PF-00299804 causes significant antitumor activity, including marked tumor regressions in a variety of human tumor xenograft models that express and/or overexpress erbB family members or contain the double mutation (L858R/T790M) in erbB1 (EGFR) associated with resistance to gefitinib and erlotinib. Furthermore, PF-00299804 shows exceptional distribution to human tumor xenografts and excellent pharmacokinetic properties across species.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Quinazolinones/pharmacology , Quinazolinones/pharmacokinetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays , Amino Acid Substitution , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , ErbB Receptors/metabolism , Female , Humans , Mice , Mice, SCID , Mutation/genetics , Phosphorylation/drug effects , Species Specificity
2.
J Med Chem ; 49(4): 1475-85, 2006 Feb 23.
Article in English | MEDLINE | ID: mdl-16480284

ABSTRACT

Structure-activity relationships for inhibition of erbB1, erbB2, and erbB4 were determined for a series of alkynamide analogues of quinazoline- and pyrido[3,4-d]pyrimidine-based compounds. The compounds were prepared by coupling the appropriate 6-aminoquinazolines or 6-aminopyrido[3,4-d]pyrimidines with alkynoic acids, using EDCI.HCl in pyridine. The compounds showed pan-erbB enzyme inhibition but were on average about 10-fold more potent against erbB1 than against erbB2 and erbB4. For cellular inhibition, the nature of the alkylating side chains was an important determinant, with 5-dialkylamino-2-pentynamide type Michael acceptors providing the highest potency. This is suggested to be due to an improved ability of the amine to participate in an autocatalysis of the Michael reaction with enzyme cysteine residues. Pyrido[3,4-d]pyrimidine analogue 39 was selected for in vivo evaluation and achieved tumor regressions at 10 mg/kg in the A431 human epidermoid carcinoma and at 40 mg/kg for the SF767 human glioblastoma and the SKOV3 human ovarian carcinoma. Complete stasis was observed at 40 mg/kg in the BXPC3 human pancreatic carcinoma as well as in the H125 human non-small-cell lung carcinoma.


Subject(s)
Alkynes/chemical synthesis , Amides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Pyrimidines/chemical synthesis , Quinazolines/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Alkynes/chemistry , Alkynes/pharmacology , Amides/chemistry , Amides/pharmacokinetics , Amides/pharmacology , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Aniline Compounds/pharmacokinetics , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line , Dogs , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Haplorhini , Humans , Mice , Mice, Nude , Mice, SCID , Phosphorylation , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , Rats , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Receptor, ErbB-4 , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...