Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 71(46): 17528-17542, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37955263

ABSTRACT

The symbiosis of probiotic bacteria with humans has rendered various health benefits while providing nutrition and a suitable environment for their survival. However, the probiotics must survive unfavorable gut conditions to exert beneficial effects. The intrinsic resistance of probiotics to survive harsh conditions results from a myriad of proteins. Interaction of microbial proteins with the host is indispensable for modulating the gut microbiome, such as interaction with cell receptors and protective action against pathogens. The complex interplay of proteins should be unraveled by utilizing metaproteomic strategies. The contribution of probiotics to health is now widely accepted. However, due to the inconsistency of generalized probiotics, contemporary research toward precision probiotics has gained momentum for customized treatment. This review explores the application of metaproteomics and AI/ML algorithms in resolving multiomics data analysis and in silico prediction of microbial features for screening specific beneficial probiotic organisms. Implementing these integrative strategies could augment the potential of precision probiotics for personalized healthcare.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Humans , Artificial Intelligence , Proteomics/methods , Delivery of Health Care
2.
Proteomics Clin Appl ; 17(6): e2300016, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37259687

ABSTRACT

Breast cancer, a multi-networking heterogeneous disease, has emerged as a serious impediment to progress in clinical oncology. Although technological advancements and emerging cancer research studies have mitigated breast cancer lethality, a precision cancer-oriented solution has not been achieved. Thus, this review will persuade the acquiescence of proteomics-based diagnostic and therapeutic options in breast cancer management. Recently, the evidence of breast cancer health surveillance through imaging proteomics, single-cell proteomics, interactomics, and post-translational modification (PTM) tracking, to construct proteome maps and proteotyping for stage-specific and sample-specific cancer subtyping have outperformed conventional ways of dealing with breast cancer by increasing diagnostic efficiency, prognostic value, and predictive response. Additionally, the paradigm shift in applied proteomics for designing a chemotherapy regimen to identify novel drug targets with minor adverse effects has been elaborated. Finally, the potential of proteomics in alleviating the occurrence of chemoresistance and enhancing reprofiled drugs' effectiveness to combat therapeutic obstacles has been discussed. Owing to the enormous potential of proteomics techniques, the clinical recognition of proteomics in breast cancer management can be achievable and therapeutic intricacies can be surmountable.


Subject(s)
Breast Neoplasms , Proteomics , Humans , Female , Proteomics/methods , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Drug Repositioning , Protein Processing, Post-Translational , Prognosis
3.
J Proteomics ; 267: 104696, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35995382

ABSTRACT

Milk is a biofluid with various functions, containing carbohydrates, lipids, proteins, vitamins, and minerals. Owing to its importance and availability of vast proteomics information, our research group designed a database for bovine milk proteins (N = 3159) containing the primary and secondary information called BoMiProt. Due to the gaining interest and intensively published literature in the last three years, BoMiProt has been upgraded with newer identified proteins (N = 7459) from peer-reviewed journals, significantly expanding the database from different milk fractions (e.g., whey, fat globule membranes, and exosomes). Additionally, class, architecture, topology, and homology, structural classification of proteins, known and predicted disorder, predicted transmembrane helices, and structures have been included. Each protein entry in the database is thoroughly cross-referenced, including 1392 BoMiProt defined proteins provided with secondary information, such as protein function, biochemical properties, post-translational modifications, significance in milk, domains, fold, AlphaFold predicted models and crystal structures. The proteome data in the database can be retrieved using several search parameters using protein name, accession IDs, and FASTA sequence. Overall, BoMiProt represents an extensive compilation of newer proteins, including structural, functional, and hierarchical information, to help researchers better understand mammary gland pathophysiology, including their potential application in improving the nutritional quality of dairy products.


Subject(s)
Milk Proteins , Milk , Animals , Databases, Protein , Milk/chemistry , Milk Proteins/analysis , Proteome/analysis , Proteomics
4.
J Proteomics ; 267: 104701, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35995384

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive subtype due to the absence of hormonal receptors. Our study aimed to identify and determine the effectiveness of salivary proteins as candidate markers for metastatic TNBC subtype using parallel reaction monitoring mass spectrometry (PRM-MS). Three salivary proteins (lipocalin-1, SMR3B, and plastin-2) that showed significant differential expression in label-free quantitation (LFQ) between TNBC (N = 6) and health subjects (HS; N = 6) were selected for further validation. The developed PRM assay was used to quantify peptides GLST and NNLE (lipocalin-1), VYAL and MINL (Plastin-2) and GPYP, and IPPP (SMR3B) on a different cohort of TNBC patients (N = 20) and HS (N = 20) for evaluating their discriminating performances. Quantitative validation using PRM correlated well with the LFQ results, and 5 peptides from three proteins showed a similar up-or down-regulation. Subsequently, these proteins were validated by Western blot analysis. Compared to one protein's performance as an individual marker, the five-signature panel with salivary GLST, VYAL, MINL, GPYP, and IPPP achieved better performance in differentiating aggressive TNBC and HS with sensitivity (80%) and specificity (95%). Targeted proteomic analysis of the prioritized proteins highlights a peptide-based signature in saliva as the potential predictor to distinguish between TNBC and HS. SIGNIFICANCE OF THE STUDY: This study was designed to identify and quantify potential markers in saliva from the triple-negative breast cancer (TNBC) patients using parallel reaction monitoring assay. Three salivary proteins, Lipocalin-1 (LCN-1), Submaxillary androgen-regulated protein 3B (SMR3B), and Plastin-2 (LCP-1) selected in the discovery-phase were further quantified by targeted proteomics and Western blots. The salivary proteins successfully differentiated TNBC patients from healthy subjects with a sensitivity (80%) and specificity (95%).


Subject(s)
Triple Negative Breast Neoplasms , Biomarkers , Humans , Lipocalin 1 , Lipocalins , Mass Spectrometry , Microfilament Proteins , Proteomics/methods , Salivary Proteins and Peptides/metabolism , Triple Negative Breast Neoplasms/metabolism
5.
J Agric Food Chem ; 70(13): 3929-3947, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35324181

ABSTRACT

Human milk, the gold standard for optimal nourishment, controls the microbial composition of infants by either enhancing or limiting bacterial growth. The milk fat globule membrane has gained interest in gut-related functions and cognitive development. The membrane proteins can directly interact with probiotic bacteria, influencing their survival and adhesion through gastrointestinal transit, whereas membrane phospholipids increase the residence time of probiotic bacteria in the gut. The commensal bacteria in milk act as the initial inoculum in building up the gut colonization of an infant, whereas oligosaccharides promote proliferation of beneficial microorganisms. Interestingly, milk extracellular vesicles are also involved in influencing the microbiota composition but are not well-explored. This review highlights the contribution of different milk components in modulating the infant gut microbiota, particularly the fat globule membrane, and the complex interplay between host- and brain-gut microbiota signaling affecting infant and adult health positively.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Adult , Humans , Infant , Infant Health , Milk, Human/microbiology , Oligosaccharides
6.
iScience ; 25(1): 103592, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35005541

ABSTRACT

Chronic graft-versus-host disease (cGVHD) targets include the oral mucosa and salivary glands after allogeneic hematopoietic stem cell transplant (HSCT). Without incisional biopsy, no diagnostic test exists to confirm oral cGVHD. Consequently, therapy is often withheld until severe manifestations develop. This proteomic study examined saliva and human salivary gland for a biomarker profile at first onset of oral cGVHD prior to initiation of topical steroid therapy. Whole saliva collected at onset of biopsy-proven oral GVHD was assessed using liquid chromatography-coupled tandem mass spectrometry with identification of 569 proteins, of which 77 significantly changed in abundance. ZG16B, a secretory lectin protein, was reduced 2-fold in oral cGVHD saliva (p <0.05), and significantly decreased in salivary gland secretory cells affected by cGVHD. Single-cell RNA-seq analysis of healthy MSG localized ZG16B expression to two discrete acinar cell populations. Reduced ZG16B expression may indicate specific cGVHD activity and possibly general salivary gland dysfunction.

7.
Physiol Plant ; 174(1): e13605, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34837239

ABSTRACT

Salinity stress poses a significant risk to plant development and agricultural yield. Therefore, elucidation of stress-response mechanisms has become essential to identify salt-tolerance genes in plants. In the present study, two genotypes of pearl millet (Pennisetum glaucum L.) with contrasting tolerance for salinity exhibited differential morpho-physiological and proteomic responses under 150 mM NaCl. The genotype IC 325825 was shown to withstand the stress better than IP 17224. The salt-tolerance potential of IC 325825 was associated with its ability to maintain intracellular osmotic, ionic, and redox homeostasis and membrane integrity under stress. The IC 325825 genotype exhibited a higher abundance of C4 photosynthesis enzymes, efficient enzymatic and non-enzymatic antioxidant system, and lower Na+ /K+ ratio compared with IP 17224. Comparative proteomics analysis revealed greater metabolic perturbation in IP 17224 under salinity, in contrast to IC 325825 that harbored pro-active stress-responsive machinery, allowing its survival and better adaptability under salt stress. The differentially abundant proteins were in silico characterized for their functions, subcellular-localization, associated pathways, and protein-protein interaction. These proteins were mainly involved in photosynthesis/response to light stimulus, carbohydrate and energy metabolism, and stress responses. Proteomics data were validated through expression profiling of the selected genes, revealing a poor correlation between protein abundance and their relative transcript levels. This study has provided novel insights into salt adaptive mechanisms in P. glaucum, demonstrating the power of proteomics-based approaches. The critical proteins identified in the present study could be further explored as potential objects for engineering stress tolerance in salt-sensitive major crops.


Subject(s)
Pennisetum , Gene Expression Regulation, Plant , Genotype , Pennisetum/genetics , Pennisetum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Proteomics , Salinity , Stress, Physiological
8.
Arch Biochem Biophys ; 713: 109060, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34666048

ABSTRACT

Catabolite repressor activator (Cra) is a member of the LacI family transcriptional regulator distributed across a wide range of bacteria and regulates the carbon metabolism and virulence gene expression. In numerous studies to crystallize the apo form of the LacI family transcription factor, the N-terminal domain (NTD), which functions as a DNA-binding domain, has been enigmatically missing from the final resolved structures. It was speculated that the NTD is disordered or unstable and gets cleaved during crystallization. Here, we have determined the crystal structure of Cra from Escherichia coli (EcCra). The structure revealed a well-defined electron density for the C-terminal domain (CTD). However, electron density was missing for the first 56 amino acids (NTD). Our data reveal for the first time that EcCra undergoes a spontaneous cleavage at the conserved Asn 50 (N50) site, which separates the N-terminal DNA binding domain from the C-terminal effector molecule binding domain. With the site-directed mutagenesis, we confirm the involvement of residue N50 in the spontaneous cleavage phenomenon. Furthermore, the Isothermal titration calorimetry (ITC) assay of the EcCra-NTD with DNA showed EcCra-NTD is in a functional conformation state and retains its DNA binding activity.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Repressor Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , DNA/metabolism , Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Mutagenesis, Site-Directed , Mutation , Protein Domains , Proteolysis , Repressor Proteins/chemistry , Repressor Proteins/genetics
9.
Cancer Biol Ther ; 22(10-12): 493-512, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34696706

ABSTRACT

Tumor metastasis is the leading cause of cancer mortality, often characterized by abnormal cell growth and invasion to distant organs. The cancer invasion due to epithelial to mesenchymal transition is affected by metabolic and oxygen availability in the tumor-associated micro-environment. A precise alteration in oxygen and metabolic signaling between healthy and metastatic cells is a substantial probe for understanding tumor progression and metastasis. Molecular heterogeneity in the tumor microenvironment help to sustain the metastatic cell growth during their survival shift from low to high metabolic-oxygen-rich sites and reinforces the metastatic events. This review highlighted the crucial role of oxygen and metabolites in metastatic progression and exemplified the role of metabolic rewiring and oxygen availability in cancer cell adaptation. Furthermore, we have also addressed potential applications of altered oxygen and metabolic networking with tumor type that could be a signature pattern to assess tumor growth and chemotherapeutics efficacy in managing cancer metastasis.


Subject(s)
Neoplasms , Tumor Microenvironment , Cell Proliferation , Epithelial-Mesenchymal Transition , Humans , Neoplasm Metastasis , Oxygen
11.
Metabolites ; 10(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322613

ABSTRACT

Milk lipids are known for a variety of biological functions, however; little is known about compositional variation across breeds, especially for Jaffarabadi buffalo, an indigenous Indian breed. Systematic profiling of extracted milk lipids was performed by mass spectrometry across summer and winter in Holstein Friesian cow and Jaffarabadi buffalo. Extensive MS/MS spectral analysis for the identification (ID) of probable lipid species using software followed by manual verification and grading of each assigned lipid species enabled ID based on (a) parent ion, (b) head group, and (c) partial/full acyl characteristic ions for comparative profiling of triacylglycerols between the breeds. Additionally, new triacylglycerol species with short-chain fatty acids were reported by manual interpretation of MS/MS spectra and comparison with curated repositories. Collectively, 1093 triacylglycerol species belonging to 141 unique sum compositions between the replicates of both the animal groups were identified. Relative quantitation at sum composition level followed by statistical analyses revealed changes in relative abundances of triacylglycerol species due to breed, season, and interaction effect of the two. Significant changes in triacylglycerols were observed between breeds (81%) and seasons (59%). When the interaction effect is statistically significant, a higher number of triacylglycerols species in Jaffarabadi has lesser seasonal variation than Holstein Friesian.

12.
FEMS Microbiol Ecol ; 97(1)2020 12 30.
Article in English | MEDLINE | ID: mdl-33242081

ABSTRACT

Bovine mastitis is a prototypic emerging and reemerging bacterial disease that results in cut-by-cut torture to animals, public health and the global economy. Pathogenic microbes causing mastitis have overcome a series of hierarchical barriers resulting in the zoonotic transmission from bovines to humans either by proximity or remotely through milk and meat. The disease control is challenging and has been attributed to faulty surveillance systems to monitor their emergence at the human-animal interface. The complex interaction between the pathogens, the hidden pathobionts and commensals of the bovine mammary gland that create a menace during mastitis remains unexplored. Here, we review the zoonotic potential of these pathogens with a primary focus on understanding the interplay between the host immunity, mammary ecology and the shift from symbiosis to dysbiosis. We also address the pros and cons of the current management strategies and the extent of the success in implementing the One-Health approach to keep these pathogens at bay.


Subject(s)
Bacterial Infections , Mastitis, Bovine , Animals , Bacterial Infections/veterinary , Cattle , Dysbiosis/veterinary , Female , Humans , Mammary Glands, Animal , Milk
13.
J Proteomics ; 223: 103815, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32423885

ABSTRACT

Bovine mastitis, caused by Staphylococcus aureus, is a major impediment to milk production and lacks markers to indicate disease progression in cows and buffaloes. Thus, the focus of this study was to identify proteins marking the transition from subclinical to clinical mastitis. Whey proteins were isolated from 6 group's i.e. healthy, subclinical and clinical mastitis of Holstein Friesian cow and Murrah buffalo. Mass spectrometry and statistical analysis (ANOVA and t-tests) were performed on 12 biological samples each from cow and buffalo (4 per healthy, subclinical and clinical mastitis) resulting in a total of 24 proteome datasets. Collectively, 1479 proteins were identified of which significant proteins were shortlisted by a combination of fold change (≤ 0.5 or ≥ 2) and q < 0.05. Of these proteins, 128 and 163 indicated disease progression in cow and buffalo, respectively. Change in expression of haptoglobin and fibronectin from Holstein Friesian while spermadhesin and osteopontin from Murrah correlated with disease progression. Similarly, angiogenin and cofilin-1 were upregulated while ubiquitin family members were downregulated during disease transition. Subsequently, selected proteins (e.g. osteopontin and fibrinogen-α) were validated by Western blots. The results of this study provide deeper insights into whey proteome dynamics and signature patterns indicative of disease progression. BIOLOGICAL SIGNIFICANCE: Bovine mastitis is the most lethal infectious disease causing a huge economic loss in the dairy industry. In an attempt, to understand the dynamics of whey proteome in response to S. aureus infection, whey protein collected from healthy, subclinical and clinical mastitic HF and Mu were investigated. A total of 1479 proteins were identified, of which 128 and 163 had signature pattern in each stage indicative of the progression of the disease. The results of the present study provide a foundation to better understand the complexity of mastitis that will ultimately help facilitate early therapeutic and husbandry-based intervention to improve animal health and milk quality.


Subject(s)
Mastitis, Bovine , Mastitis , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Buffaloes , Cattle , Female , Humans , Milk , Proteome , Staphylococcal Infections/veterinary , Staphylococcus aureus
14.
J Proteomics ; 215: 103648, 2020 03 20.
Article in English | MEDLINE | ID: mdl-31958638

ABSTRACT

Bovine milk has become an important biological fluid for proteomic research due to its nutritional and immunological benefits. To date, over 300 publications have reported changes in bovine milk protein composition based on seasons, lactation stages, breeds, health status and milk fractions while there are no reports on consolidation or overlap of data between studies. Thus, we have developed a literature-based, manually curated open online database of bovine milk proteome, BoMiProt (http://bomiprot.org), with over 3100 proteins from whey, fat globule membranes and exosomes. Each entry in the database is thoroughly cross-referenced including 397 proteins with well-defined information on protein function, biochemical properties, post-translational modifications and significance in milk from different publications. Of 397 proteins, over 199 have been reported with a structural gallery of homology models and crystal structures in the database. The proteome data can be retrieved using several search parameters such as protein name, accession IDs, FASTA sequence. Furthermore, the proteome data can be filtered based on milk fractions, post-translational modifications and/or structures. Taken together, BoMiProt represents an extensive compilation of bovine milk proteins from literature, providing a foundation for future studies to identify specific milk proteins which may be linked to mammary gland pathophysiology. BIOLOGICAL SIGNIFICANCE: Protein data identified from different previously published proteomic studies on bovine milk samples (21 publications) were gathered in the BoMiProt database. Unification of the identified proteins will give researchers an initial reference database on bovine milk proteome to understand the complexities of milk as a biological fluid. BoMiProt has a user-friendly interface with several useful features, including different search criteria for primary and secondary information of proteins along with cross-references to external databases. The database will provide insights into the existing literature and possible future directions to investigate further and improve the beneficial effects of bovine milk components and dairy products on human health.


Subject(s)
Milk Proteins , Proteomics , Animals , Cattle , Female , Glycolipids , Glycoproteins , Humans , Lipid Droplets
15.
Prep Biochem Biotechnol ; 50(1): 18-27, 2020.
Article in English | MEDLINE | ID: mdl-31453751

ABSTRACT

We report on the development of a functionalized membrane-based technology for selective enrichment of milk fat globules from raw bovine milk. Functionalization was conducted by in situ polymerization of acrylic acid within a polyvinylidene fluoride membrane, followed by the electrostatic attachment of a cationic polymer to impart a net positive charge. The functionalized membrane-based technology enabled a one-step method of selective separation of globules directly from milk-based on size and charge. The presence of globules in the eluate was confirmed by fluorescence microscopy. Quantification of the extracted phospholipids from globules in the eluant revealed a significantly higher amount of polar lipids than the permeate. Our study describes a comprehensive analysis of selective enrichment of fat globules using a functionalized membrane and demonstrates the beneficial effect of extracted phospholipids from enriched fat globules.


Subject(s)
Glycolipids/isolation & purification , Glycoproteins/isolation & purification , Membranes, Artificial , Milk/chemistry , Polyvinyls/chemistry , Animals , Cattle , Chemical Fractionation/methods , Glycolipids/analysis , Glycoproteins/analysis , Lipid Droplets , Phospholipids/analysis
16.
PLoS One ; 14(8): e0221830, 2019.
Article in English | MEDLINE | ID: mdl-31465429

ABSTRACT

Characterization of milk fat globule (MFG) was performed to investigate the difference in MFG membrane (MFGM) between fresh and mastitis Holstein Friesian cow milk. Lipid distribution investigated by exogenous phospholipids using microscopy showed higher phospholipid content in fresh compared to mastitic MFGM. Xanthine oxidase assay indicative of membrane impairment revealed lower activity in mastitic samples compared to fresh globules. Of note, significantly higher roughness of globule surface and zeta potential was observed in mastitis compared to fresh globules. Influence of globule membrane on the interaction with L. fermentum demonstrated preferential adhesion of bacteria to fresh compared to mastitic globules including enhanced extent of binding. Results of the present study provides an insight of the interfacial changes occurring at the globule surface as well as highlighting the importance of selective bacterial interaction with milk components for the potential development of functional food with relevance to human health.


Subject(s)
Glycolipids/chemistry , Glycolipids/metabolism , Glycoproteins/chemistry , Glycoproteins/metabolism , Mastitis, Bovine/metabolism , Animals , Cattle , Female , Flow Cytometry , Food Analysis , Glycolipids/analysis , Glycoproteins/analysis , Lipid Droplets , Mastitis, Bovine/genetics , Microscopy, Atomic Force , Phospholipids/analysis , Phospholipids/metabolism , Structure-Activity Relationship , Xanthine Oxidase/metabolism
17.
Plant J ; 100(6): 1176-1192, 2019 12.
Article in English | MEDLINE | ID: mdl-31437324

ABSTRACT

Apple (Malus sp.) and other genera belonging to the sub-tribe Malinae of the Rosaceae family produce unique benzoic acid-derived biphenyl phytoalexins. Cell cultures of Malus domestica cv. 'Golden Delicious' accumulate two biphenyl phytoalexins, aucuparin and noraucuparin, in response to the addition of a Venturia inaequalis elicitor (VIE). In this study, we isolated and expressed a cinnamate-CoA ligase (CNL)-encoding sequence from VIE-treated cell cultures of cv. 'Golden Delicious' (M. domestica CNL; MdCNL). MdCNL catalyses the conversion of cinnamic acid into cinnamoyl-CoA, which is subsequently converted to biphenyls. MdCNL failed to accept benzoic acid as a substrate. When scab-resistant (cv. 'Shireen') and moderately scab-susceptible (cv. 'Golden Delicious') apple cultivars were challenged with the V. inaequalis scab fungus, an increase in MdCNL transcript levels was observed in internodal regions. The increase in MdCNL transcript levels could conceivably correlate with the pattern of accumulation of biphenyls. The C-terminal signal in the MdCNL protein directed its N-terminal reporter fusion to peroxisomes in Nicotiana benthamiana leaves. Thus, this report records the cloning and characterisation of a cinnamoyl-CoA-forming enzyme from apple via a series of in vivo and in vitro studies. Defining the key step of phytoalexin formation in apple provides a biotechnological tool for engineering elite cultivars with improved resistance.


Subject(s)
Benzoates/metabolism , Cinnamates/metabolism , Ligases/metabolism , Malus/metabolism , Amino Acid Sequence , Ascomycota/pathogenicity , Biphenyl Compounds , Cell Culture Techniques , Gene Expression Regulation, Plant , Genes, Plant , Ligases/chemistry , Malus/genetics , Models, Molecular , Molecular Docking Simulation , Plant Diseases/microbiology , Plant Leaves , Protein Conformation , Sequence Alignment , Sesquiterpenes , Nicotiana , Phytoalexins
18.
Res Vet Sci ; 125: 244-252, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31323525

ABSTRACT

Bovine milk contains different components with nutritional and immunological benefits. It is easily accessible and a rich source of potential markers reflective of pathophysiological conditions; however, little is known about the changes in protein abundance associated with variation across breeds and seasons. In this study, we performed a comprehensive proteomic profiling of whey proteins from Holstein Friesian cow and Murrah buffalo across summer and winter seasons. Collectively, 490 proteins were identified with 113 and 144 differentially expressed proteins across seasons in cow and buffalo, respectively. Breed specific proteins like secretoglobin, e-cadherin and cathepsin-L were detected exclusively in HF, while basigin, conglutinin, and thrombomodulin were identified exclusively in Mu. Acute phase proteins (e.g. haptoglobin and α1AG) were more abundant in summer while antimicrobial proteins (e.g. conglutinin and osteopontin) were upregulated in winter. Similarly, proteins involved in lipid homeostasis (e.g. perilipin 2 and acyl CoA binding protein) showed breed specific variations. Selected representative mass spectrometric proteins (e.g. gelsolin and osteopontin) were validated by Western blot analysis. Results of this study indicate the dynamic nature of milk protein and provide a foundation for future studies of whey proteins which may be linked to diseases specific across breeds and seasons.


Subject(s)
Buffaloes/physiology , Cattle/physiology , Seasons , Whey Proteins/chemistry , Whey/chemistry , Animals , Female , Milk/metabolism , Proteomics/methods , Species Specificity , Whey Proteins/metabolism
19.
Crit Rev Microbiol ; 45(1): 82-102, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30632429

ABSTRACT

Protein glycosylation systems in many bacteria are often associated with crucial biological processes like pathogenicity, immune evasion and host-pathogen interactions, implying the significance of protein-glycan linkage. Similarly, host protein glycosylation has been implicated in antimicrobial activity as well as in promoting growth of beneficial strains. In fact, few pathogens notably modulate host glycosylation machineries to facilitate their survival. To date, diverse chemical and biological strategies have been developed for conjugate vaccine production for disease control. Bioconjugate vaccines, largely being produced by glycoengineering using PglB (the N-oligosaccharyltransferase from Campylobacter jejuni) in suitable bacterial hosts, have been highly promising with respect to their effectiveness in providing protective immunity and ease of production. Recently, a novel method of glycoconjugate vaccine production involving an O-oligosaccharyltransferase, PglL from Neisseria meningitidis, has been optimized. Nevertheless, many questions on defining antigenic determinants, glycosylation markers, species-specific differences in glycosylation machineries, etc. still remain unanswered, necessitating further exploration of the glycosylation systems of important pathogens. Hence, in this review, we will discuss the impact of bacterial protein glycosylation on its pathogenesis and the interaction of pathogens with host protein glycosylation, followed by a discussion on strategies used for bioconjugate vaccine development.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Glycosylation , Host-Pathogen Interactions , Bacteria/pathogenicity , Bacterial Vaccines/chemistry , Bacterial Vaccines/immunology
20.
FASEB Bioadv ; 1(3): 191-207, 2019 Mar.
Article in English | MEDLINE | ID: mdl-32123828

ABSTRACT

Breast and ovarian cancers, the most common cancers in women in India, are expected to rise in the next decade. Metastatic organotropism is a nonrandom, predetermined process which represents a more lethal and advanced form of cancer with increased mortality rate. In an attempt to study organotropism, salivary proteins were analyzed by mass spectrometry indicative of pathophysiology of breast and ovarian cancers and were compared to healthy and ovarian chemotherapy subjects. Collectively, 646 proteins were identified, of which 409 proteins were confidently identified across all four groups. Network analysis of upregulated proteins such as coronin-1A, hepatoma-derived growth factor, vasodilator-stimulated phosphoprotein (VASP), and cofilin in breast cancer and proteins like coronin-1A, destrin, and HSP90α in ovarian cancer were functionally linked and were known to regulate cell proliferation and migration. Additionally, proteins namely VASP, coronin-1A, stathmin, and suprabasin were confidently identified in ovarian chemotherapy subjects, possibly in response to combined paclitaxel and carboplatin drug therapy to ovarian cancer. Selected representative differentially expressed proteins (eg, gelsolin, VASP) were validated by western blot analysis. Results of this study provide a foundation for future research to better understand the organotropic behavior of breast and ovarian cancers, as well as neoadjuvant drug response in ovarian cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...