Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 59(9): 2317-24, 2008.
Article in English | MEDLINE | ID: mdl-18515832

ABSTRACT

Chitosan (a polymer of beta-1,4-glucosamine residues) is a deacetylated derivative of chitin which presents antifungal properties and acts as a potent elicitor of plant resistance against fungal pathogens. Attention was focused in this study on the chitosan-induced early events in the elicitation chain. Thus, it was shown that chitosan triggered in a dose-dependent manner rapid membrane transient depolarization of Mimosa pudica motor cells and, correlatively, a transient rise of pH in the incubation medium of pulvinar tissues. By using plasma membrane vesicles (PMVs), it was specified that a primary site of action of the compound is the plasma membrane H(+)-ATPase as shown by its inhibitory effect on the proton pumping and the catalytic activity of the enzyme up to 250 microg ml(-1). As a consequence, chitosan treatment modified H(+)-mediated processes, in particular it inhibited the uptake of the H(+)-substrate co-transported sucrose and valine, and inhibited the light-induced H(+)/K(+)-mediated turgor reaction of motor cells. The present data also allowed the limit of the cytotoxicity of the compound to be established close to a concentration of 100 microg ml(-1) at the plasma membrane level. As a consequence, chitosan could be preferably used in plant disease control as a powerful elicitor rather than a direct antifungal agent.


Subject(s)
Cell Membrane/drug effects , Chitosan/pharmacology , Mimosa/drug effects , Proton-Translocating ATPases/metabolism , Biological Transport , Cell Membrane/enzymology , Cell Membrane/physiology , Cell Polarity , Coated Vesicles/drug effects , Coated Vesicles/physiology , Coated Vesicles/ultrastructure , Electrophysiology , Hydrogen-Ion Concentration , Mimosa/enzymology , Mimosa/physiology , Plant Proteins/antagonists & inhibitors , Plant Proteins/metabolism , Proton-Translocating ATPases/antagonists & inhibitors
2.
Plant Physiol Biochem ; 43(10-11): 1006-13, 2005.
Article in English | MEDLINE | ID: mdl-16325412

ABSTRACT

Cysteine inhibited mycelial growth of the pathogenic fungus affecting grapevines Eutypa lata Pers. Fr. Tul. and C. Tul. in a concentration-dependent manner. The threshold value (defined by the concentration inducing a growth inhibition higher than 5%) was 0.5 mM. A 10 mM concentration induced a complete inhibition of growth and triggered necrotic processes as evidenced by an increasing number of nuclei stained by propidium iodide. In conditions mimicking the plant environment (in particular, a pH near the apoplastic value, i.e. 5.5), 6 mM cysteine induced dramatic modifications in the structural organization of the mycelium (wall, mitochondria, vacuoles and nucleus) leading to death of the hyphae. The antifungal effect of the molecule increased at the acidic experimental pH (pH 4.1). The effect was highly specific to cysteine since modifying the molecular arrangement or masking the SH-function hindered the antifungal efficiency. Cysteine spectrum of action was broad among the various strains of E. lata tested. However, a lower efficiency was observed against fungal species intervening in other grapevine diseases (esca, black dead arm). Besides its direct antifungal effect, the role of cysteine presents particular interest in the fight against fungal pathogens since it triggered an excretion of ergosterol, a compound with elicitor properties. Therefore, cysteine may indirectly increase plant defense reactions.


Subject(s)
Antifungal Agents/pharmacology , Ascomycota/drug effects , Cysteine/pharmacology , Vitis/microbiology , Ascomycota/growth & development , Fluorescence
3.
C R Biol ; 328(3): 263-70, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15810550

ABSTRACT

Eutypa dieback (dying arm disease, eutypiosis) is a very devastating disease in many grape-producing areas around the world. This vascular disease is induced by the ascomycete Eutypa lata Pers. Fr. Tul & C. Tul. invading the trunk by pruning wounds. The environmental factors and the nutritional requirements regulating fungus development are yet poorly known. This work shows that the isolated strain of E. lata was able to grow in a large temperature range (2-30 degrees C). However, a higher temperature (35 degrees C) presented inhibitory effects on mycelial growth. E. lata was able to use various osidic molecules (C5, C6, C12, C18, C24, and starch); showing thus a large adaptation to the carbon source supplied. As nitrogen source, it used salts and numerous natural amino acids. A significant result was obtained with cysteine presenting obvious antifungal properties. This effect can further be used with the aim of setting up a curative treatment of the disease.


Subject(s)
Ascomycota/growth & development , Mycelium/growth & development , Plant Diseases/microbiology , Vitis , Temperature
4.
C R Biol ; 326(4): 363-70, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12876888

ABSTRACT

Ergosterol (a fungal membrane component) induced modification of proton fluxes and membrane hyperpolarization in motor cells of Mimosa pudica. These reactions appear specific since they were not induced by the other sterols tested. A specific desensitization was observed, since cells did not react to a second ergosterol application. Exposed at first to other sterols, cells remained reactive to ergosterol. Comparatively, chitosan (a fungal wall component with known elicitor properties) triggered a membrane depolarization and also induced specific desensitization. This comparative study shows that ergosterol and chitosan are distinctly perceived by plant cells and induced different early events at the plasma membrane level.


Subject(s)
Chitin/analogs & derivatives , Ergosterol/pharmacology , Mimosa/drug effects , Mimosa/physiology , Cell Membrane/drug effects , Chitin/pharmacology , Chitosan , Hydrogen-Ion Concentration , Membrane Potentials/drug effects , Mimosa/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL