Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters











Publication year range
1.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39338405

ABSTRACT

Background/Objectives: Leishmaniasis, a neglected disease caused by Leishmania spp. including L. amazonensis, urgently requires new treatments. Polyalthic acid (PA), a natural diterpene from Copaifera spp., has previously demonstrated significant antiparasitic potential. This study evaluated the leishmanicidal effects of polyalthic acid (PA), alone and with amphotericin B (AmpB), on L. amazonensis promastigote and amastigote forms. Results: PA showed significant activity against promastigotes, with 50% effective concentration (EC50) values of 2.01 µM at 24 h and an EC50 of 3.22 µM against amastigotes after 48 h. The PA and AmpB combination exhibited a synergistic effect on both forms without inducing cytotoxicity or hemolysis. Morphological changes in promastigotes, including vacuole formation and cell rounding, were more pronounced with the combination. Conclusions: These findings suggest that PA and AmpB together could form a promising new treatment strategy against Leishmania infections, offering enhanced efficacy without added toxicity.

2.
Exp Parasitol ; 262: 108771, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723847

ABSTRACT

Toxoplasmosis affects about one-third of the world's population. The disease treatment methods pose several side effects and do not efficiently eliminate the parasite, making the search for new therapeutic approaches necessary. We aimed to assess the anti-Toxoplasma gondii activity of four Copaifera oleoresins (ORs) and two isolated diterpene acids, named ent-kaurenoic and ent-polyalthic acid. We used HeLa cells as an experimental model of toxoplasmosis. Uninfected and infected HeLa cells were submitted to the treatments, and the parasite intracellular proliferation, cytokine levels and ROS production were measured. Also, tachyzoites were pre-treated and the parasite invasion was determined. Finally, an in silico analysis was performed to identify potential parasite targets. Our data show that the non-cytotoxic concentrations of ORs and diterpene acids controlled the invasion and proliferation of T. gondii in HeLa cells, thus highlighting the possible direct action on parasites. In addition, some compounds tested controlled parasite proliferation in an irreversible manner. An additional and non-exclusive mechanism of action involves the modulation of host cell components, by affecting the upregulation of the IL-6. Additionally, molecular docking suggested that ent-polyalthic acid has a high affinity for the active site of the TgCDPK1 protein. Copaifera ORs have great antiparasitic activity against T. gondii, and this effect can be partially explained by the presence of the isolated compounds ent-kaurenoic and ent-polyalthic acid.


Subject(s)
Diterpenes , Fabaceae , Plant Extracts , Toxoplasma , HeLa Cells , Humans , Diterpenes/pharmacology , Diterpenes/isolation & purification , Diterpenes/chemistry , Toxoplasma/drug effects , Toxoplasma/growth & development , Fabaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism , Cytokines/metabolism , Interleukin-6/metabolism , Molecular Docking Simulation
3.
Planta Med ; 90(10): 810-820, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38749480

ABSTRACT

Copaifera duckei oleoresin is a plant product extensively used by the Brazilian population for multiple purposes, such as medicinal and cosmetic. Despite its ethnopharmacological relevance, there is no pharmacokinetic data on this important medicinal plant. Due to this, we determined the pharmacokinetic profile of the major nonvolatile compounds of C. duckei oleoresin. The diterpenes ent-polyalthic acid and dihydro-ent-agathic acid correspond to approximately 40% of the total oleoresin. Quantification was performed using LC-MS/MS, and the validated analytical method showed to be precise, accurate, robust, reliable, and linear between 0.57 and 114.74 µg/mL plasma and 0.09 to 18.85 µg/mL plasma, respectively, for ent-polyalthic acid and dihydro-ent-agathic acid, making it suitable for application in preclinical pharmacokinetic studies. Wistar rats received a single 200 mg/kg oral dose (gavage) of C. duckei oleoresin, and blood was collected from their caudal vein through 48 h. Population pharmacokinetics analysis of ent-polyalthic and dihydro-ent-agathic acids in rats was evaluated using nonlinear mixed-effects modeling conducted in NONMEN software. The pharmacokinetic parameters of ent-polyalthic acid were absorption constant rate = 0.47 h-1, central and peripheral apparent volume of distribution = 0.04 L and 2.48 L, respectively, apparent clearance = 0.15 L/h, and elimination half-life = 11.60 h. For dihydro-ent-agathic acid, absorption constant rate = 0.28 h-1, central and peripheral apparent volume of distribution = 0.01 L and 0.18 L, respectively, apparent clearance = 0.04 L/h, and elimination half-life = 3.49 h. The apparent clearance, central apparent volume of distribution, and peripheral apparent volume of distribution of ent-polyalthic acid were approximately 3.75, 4.00-, and 13.78-folds higher than those of dihydro-ent-agathic.


Subject(s)
Diterpenes , Rats, Wistar , Animals , Diterpenes/pharmacokinetics , Diterpenes/blood , Diterpenes/chemistry , Rats , Male , Resins, Plant/pharmacokinetics , Resins, Plant/chemistry , Tandem Mass Spectrometry , Fabaceae/chemistry , Plant Extracts/pharmacokinetics , Plant Extracts/chemistry , Chromatography, Liquid
4.
Fitoterapia ; 175: 105975, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685509

ABSTRACT

Baccharin is one of the major compounds found in Brazilian green propolis and its botanical source, Baccharis dracunculifolia. Considering the biological effects of propolis and B. dracunculifolia, this study aims to evaluate the analgesic and anti-inflammatory potential of baccharin. The neurodepressor potential was performed by the open field test, analgesia by mechanical stimulation with Dynamic Plantar Aesthesiometer, and by thermal stimulation with Hargreaves apparatus. In addition, the anti-inflammatory potential was achieved by the paw edema assay, histopathological evaluation, and NF-kB expression. Doses of 2.5, 5, and 10 mg/kg of baccharin were evaluated. After euthanasia, plantar tissue was collected and prepared for histology. As a result, analgesic activity was observed at a dose of 10 mg/kg of baccharin in thermal stimulation under an inflammatory process and anti-inflammatory potential at a dose of 5 mg/kg of baccharin from the second hour in the paw edema test. A decrease in cellular infiltrate and down-modulation of NF-kB, besides the reduction of edema in the histopathology was observed. There was no evidence of kidney and liver toxicity and neurodepressive potential at the doses tested. Thus, baccharin has a promising anti-inflammatory effect possibly associated with antiedematogenic activity by inhibiting mediators such as prostaglandins, inhibiting the migration of polymorphonuclear cells, and modulating NF-kB expression.


Subject(s)
Analgesics , Anti-Inflammatory Agents , Baccharis , Edema , NF-kappa B , Propolis , Animals , Male , Rats , Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Baccharis/chemistry , Brazil , Edema/drug therapy , Edema/chemically induced , NF-kappa B/metabolism , Propolis/pharmacology , Rats, Wistar , Trichothecenes
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5265-5274, 2024 07.
Article in English | MEDLINE | ID: mdl-38270618

ABSTRACT

Melanoma, an aggressive and potentially fatal skin cancer, is constrained by immunosuppression, resistance, and high toxicity in its treatment. Consequently, there is an urgent need for innovative antineoplastic agents. Therefore, this study investigated the antimelanoma potential of guttiferone E (GE). In an allogeneic murine B16 melanoma model, GE was administered subcutaneously and intraperitoneally. Antitumor evaluation included tumor volume/weight measurements and histopathological and immunohistochemical analysis. Furthermore, the toxicity of the treatments was evaluated through body/organ weights, biochemical parameters, and genotoxicity. Subcutaneous administration of 20 mg/kg of GE resulted in a significant reduction in both tumor volume and weight, effectively suppressing melanoma cell proliferation as evidenced by a decrease in mitotic figures. The tumor growth inhibition rate was equivalent to 54%. This treatment upregulated cleaved caspase-3, indicating apoptosis induction. On the other hand, intraperitoneal administration of GE showed no antimelanoma effect. Remarkably, GE treatments exhibited no toxicity, evidenced by non-significant differences in body weight gain, as well as organ weight, biochemical parameters of nephrotoxicity and hepatotoxicity, and genotoxic damage. This study revealed, for the first time, the efficacy of subcutaneous administration of GE in reducing melanoma, in the absence of toxicity. Furthermore, it was observed that the apoptotic signaling pathway is involved in the antimelanoma property of GE. These findings offer valuable insights for further exploring GE's therapeutic applications in melanoma treatment.


Subject(s)
Melanoma, Experimental , Mice, Inbred C57BL , Animals , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Apoptosis/drug effects , Mice , Male , Antineoplastic Agents/toxicity , Antineoplastic Agents/administration & dosage , Benzophenones/pharmacology , Benzophenones/administration & dosage , Benzophenones/toxicity , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Cell Proliferation/drug effects , Tumor Burden/drug effects , Cell Line, Tumor , Injections, Subcutaneous , Female
6.
J Photochem Photobiol B ; 250: 112834, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38157703

ABSTRACT

The rise in antifungal resistance and side effects of conventional treatments drive the search for innovative therapies like Photodynamic Therapy (PDT). This study explored the efficacy of PDT mediated by gutiferone, an isolated compound from red propolis, for candidiasis treatment. Multiple evaluation methods were employed, including determining the minimum inhibitory concentration (MIC) via broth microdilution, quantifying biomass using crystal violet detachment, and cell counting through total plate count. PDT mediated by gutiferone was also assessed in five groups of mice, followed by histopathological examination and agar plating of lingual tissue samples. Among the seven Candida species tested, gutiferone displayed efficacy against C. albicans, C. glabrata, and C. tropicalis, with MIC values of 1000 µg/mL. In C. tropicalis biofilms, exposure to gutiferone led to a reduction of 1.61 Log10 CFU/mL. PDT mediated by gutiferone achieved an average reduction of 3.68 Log10 CFU/mL in C. tropicalis biofilm cells, underscoring its potent fungicidal activity. Histopathological analysis revealed fungal structures, such as pseudohyphae and hyphae, in infected groups (G2) and irradiated mice. In contrast, groups treated with gutiferone or subjected to gutiferone-assisted PDT (G5) exhibited only few blastoconidia. Furthermore, CFU/mL assessments in lingual tissue post-treatment demonstrated a significantly lower count (0.30 Log10 CFU/mL) in the G5 group compared to G2 (2.43 Log10 CFU/mL). These findings highlight the potential of PDT mediated by gutiferone as a promising alternative for managing denture stomatitis. Future research and clinical investigations offer the promise of validating its clinical applicability and improving outcomes in the treatment of oral candidiasis.


Subject(s)
Candidiasis, Oral , Photochemotherapy , Animals , Mice , Candidiasis, Oral/drug therapy , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida albicans , Photochemotherapy/methods , Candida , Microbial Sensitivity Tests , Biofilms
7.
Nat Prod Res ; : 1-5, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37915254

ABSTRACT

Propolis is a natural product widely used in folk medicine. Among its various applications, its antiparasitic properties stand out. Due to its great biodiversity, Brazil is a major producer of several types of propolis. This study proposes to evaluate the leishmanicidal properties of the hydroalcoholic extract of propolis collected in the southern region of Brazil (Brown propolis - HEBP) and its main isolated compounds: abietic acid (1), 13-epi-cupressic acid (2), 13-epi-torulosol (3), dehydroabietic acid (4), cis-communic acid (5) and ent-agatic acid (6). In general, the diterpenes did not show activity against the promastigotes of Leishmania (Leishmania) amazonensis at the evaluated concentrations. However, the HEBP was very active with an inhibition concentration of 50% at 8.32 µg/mL. Moreover, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) assays showed morphological and structural alterations in promastigote forms of L. (L.) amazonensis when incubated with HEBP.

8.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37895828

ABSTRACT

This study aimed at evaluating the potential of Copaifera lucens, specifically its oleoresin (CLO), extract (CECL), and the compound ent-polyalthic acid (PA), in combating caries and toxoplasmosis, while also assessing its toxicity. The study involved multiple assessments, including determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against cariogenic bacteria. CLO and PA exhibited MIC and MBC values ranging from 25 to 50 µg/mL, whereas CECL showed values equal to or exceeding 400 µg/mL. PA also displayed antibiofilm activity with minimum inhibitory concentration of biofilm (MICB50) values spanning from 62.5 to 1000 µg/mL. Moreover, PA effectively hindered the intracellular proliferation of Toxoplasma gondii at 64 µg/mL, even after 24 h without treatment. Toxicological evaluations included in vitro tests on V79 cells, where concentrations ranged from 78.1 to 1250 µg/mL of PA reduced colony formation. Additionally, using the Caenorhabditis elegans model, the lethal concentration (LC50) of PA was determined as 1000 µg/mL after 48 h of incubation. Notably, no significant differences in micronucleus induction and the NDI were observed in cultures treated with 10, 20, or 40 µg/mL of CLO. These findings underscore the safety profile of CLO and PA, highlighting their potential as alternative treatments for caries and toxoplasmosis.

9.
Braz J Microbiol ; 54(4): 3211-3220, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37651088

ABSTRACT

The aim of this study was to evaluate the antimicrobial efficacy of polyhexamethylene hydrochloride guanidine (PHMGH) compared to chlorhexidine digluconate (CLX) for use as an oral antiseptic during dental procedures in wild cats. This research is crucial due to limited information on the diversity of oral microorganisms in wild cats and the detrimental local and systemic effects of oral diseases, which highlights the importance of improving prevention and treatment strategies. Samples were collected from the oral cavities of four Puma concolor, one Panthera onca, and one Panthera leo, and the number of colony-forming units per milliliter (CFU/mL) was counted and semi-automatically identified. The antimicrobial susceptibility profile of bacterial isolates was determined using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill kinetics of PHMGH and CLX. A total of 16 bacterial isolates were identified, consisting of six Gram-positive and 10 Gram-negative. PHMGH displayed MIC and MBC from 0.24 to 125.00 µg/mL, lower than those of CLX against three isolates. Time-kill kinetics showed that PHMGH reduced the microbial load by over 90% for all microorganisms within 30 min, whereas CLX did not. Only two Gram-positive isolates exposed to the polymer showed incomplete elimination after 60 min of contact. The results could aid in the development of effective prevention and treatment strategies for oral diseases in large felids. PHMGH showed promising potential at low concentrations and short contact times compared to the commercial product CLX, making it a possible active ingredient in oral antiseptic products for veterinary use in the future.


Subject(s)
Anti-Infective Agents, Local , Anti-Infective Agents, Local/pharmacology , Guanidine , Chlorhexidine/pharmacology , Guanidines/pharmacology , Microbial Sensitivity Tests
10.
Antibiotics (Basel) ; 12(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37508298

ABSTRACT

Polyalthic acid (PA) is a diterpene found in copaiba oil. As a continuation of our work with PA, we synthesized PA analogs and investigated their antibacterial effects on preformed biofilms of Staphylococcus epidermidis and determined the minimal inhibitory concentration (MIC) of the best analogs against planktonic bacterial cells. There was no difference in activity between the amides 2a and 2b and their corresponding amines 3a and 3b regarding their ability to eradicate biofilm. PA analogs 2a and 3a were able to significantly eradicate the preformed biofilm of S. epidermidis and were active against all the Gram-positive bacteria tested (Enterococcus faecalis, Enterococcus faecium, S. epidermidis, Staphylococcus aureus), with different MIC depending on the microorganism. Therefore, PA analogs 2a and 3a are of interest for further in vitro and in vivo testing to develop formulations for antibiotic drugs against Gram-positive bacteria.

11.
Exp Parasitol ; 250: 108534, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37100271

ABSTRACT

Due to the lack of efficient antiparasitic therapy and vaccines, as well as emerging resistance strains, congenital toxoplasmosis is still a public health issue worldwide. The present study aimed to assess the effects of an oleoresin obtained from the species Copaifera trapezifolia Hayne (CTO), and an isolated molecule found in the CTO, ent-polyalthic acid (ent-15,16-epoxy-8(17),13(16),14-labdatrien-19-oic acid) (named as PA), against T. gondii infection. We used human villous explants as an experimental model of human maternal-fetal interface. Uninfected and infected villous explants were exposed to the treatments; the parasite intracellular proliferation and the cytokine levels were measured. Also, T. gondii tachyzoites were pre-treated and the parasite proliferation was determined. Our findings showed that CTO and PA reduced efficiently the parasite growth with an irreversible action, but without causing toxicity to the villi. Also, treatments reduced the levels of IL-6, IL-8, MIF and TNF by villi, what configures a valuable treatment option for the maintenance of a pregnancy in an infectious context. In addition to a possible direct effect on parasites, our data suggest an alternative mechanism by which CTO and PA alter the villous explants environment and then impair parasite growth, since the pre-treatment of villi resulted in lower parasitic infection. Here, we highlighted PA as an interesting tool for the design of new anti-T. gondii compounds.


Subject(s)
Fabaceae , Toxoplasma , Humans , Pregnancy , Female , Plant Extracts/pharmacology
12.
Molecules ; 28(8)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37110745

ABSTRACT

The technologies used to produce the different dosage forms of propolis can selectively affect the original propolis compounds and their biological activities. The most common type of propolis extract is hydroethanolic. However, there is considerable demand for ethanol-free propolis presentations, including stable powder forms. Three propolis extract formulations were developed and investigated for chemical composition and antioxidant and antimicrobial activity: polar propolis fraction (PPF), soluble propolis dry extract (PSDE), and microencapsulated propolis extract (MPE). The different technologies used to produce the extracts affected their physical appearance, chemical profile, and biological activity. PPF was found to contain mainly caffeic and p-Coumaric acid, while PSDE and MPE showed a chemical fingerprint closer to the original green propolis hydroalcoholic extract used. MPE, a fine powder (40% propolis in gum Arabic), was readily dispersible in water, and had less intense flavor, taste, and color than PSDE. PSDE, a fine powder (80% propolis) in maltodextrin as a carrier, was perfectly water-soluble and could be used in liquid formulations; it is transparent and has a strong bitter taste. PPF, a purified solid with large amounts of caffeic and p-Coumaric acids, had the highest antioxidant and antimicrobial activity, and therefore merits further study. PSDE and MPE had antioxidant and antimicrobial properties and could be used in products tailored to specific needs.


Subject(s)
Anti-Infective Agents , Propolis , Antioxidants/chemistry , Propolis/chemistry , Powders , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Water
13.
Rev Bras Farmacogn ; 33(2): 288-299, 2023.
Article in English | MEDLINE | ID: mdl-36908300

ABSTRACT

Brazil is one of the largest propolis producers in the world. Propolis is produced by bees from plant exudates and tissues, leading to many variations in the types of propolis. Generally, Brazilian propolis types are green, brown, and red. Despite not being the main research focus as the green and red propolis, brown propolis is the second most produced propolis type in Brazil and has tremendous economic and medicinal importance. Propolis has drawn attention with the rise in the search for healthier lifestyles, functional foods, biocosmetics, and natural products as therapeutic sources. This review covers the main chemical constituents identified in different types of Brazilian brown propolis, and their botanical sources, chemistry, and biological activities. The economic aspect of brown propolis is also presented. There are many gaps to be filled for brown propolis regarding the development of analytical methods, and quality control to allow its standardization, limiting its applicability in the food and pharmaceutical industries. Future perspectives regarding brown propolis research were discussed, especially biological activities, to support the medicinal uses of different types of brown propolis. Supplementary Information: The online version contains supplementary material available at 10.1007/s43450-023-00374-x.

14.
Biomed Chromatogr ; 37(8): e5634, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36977284

ABSTRACT

Propolis is a natural product of great economic and pharmacological importance. The flora surrounding the bee communities is a determining factor in the composition of propolis and therefore in its biological and medicinal properties. Brown propolis is one of the most important types of propolis in Brazil, produced in the southeastern region. The ethanolic extract of a brown propolis sample from Minas Gerais state was chemically characterized for the subsequent development of a RP-HPLC method, validated according to the standards of regulatory agencies. The leishmanicidal activity of this extract was assessed. The brown propolis was characterized by the presence of chemical markers reported on green propolis such as ferulic acid, coumaric acid, caffeic acid, cinnamic acid, baccharin, artepillin and drupanin, indicating a probable origin on Baccharis dracunculifolia. The developed method agreed with the parameters established by the validation guidelines, then proved to be reliable for the analysis of this type of propolis. The brown propolis displayed significant activity against Leishmania amazonensis with IC50 values of 1.8 and 2.4 µg/ml against the promastigote and amastigote forms, respectively. The studied propolis exhibited promising evidence for use as a natural source against L. amazonensis.


Subject(s)
Propolis , Propolis/pharmacology , Propolis/chemistry , Brazil , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Reference Standards
15.
Front Cell Infect Microbiol ; 13: 1113896, 2023.
Article in English | MEDLINE | ID: mdl-36860986

ABSTRACT

The conventional treatment of congenital toxoplasmosis is mainly based on the combination of sulfadiazine and pyrimethamine. However, therapy with these drugs is associated with severe side effects and resistance, requiring the study of new therapeutic strategies. There are currently many studies with natural products, including Copaifera oleoresin, showing actions against some pathogens, as Trypanosoma cruzi and Leishmania. In the present study, we investigated the effects of the leaf hydroalcoholic extract and oleoresin from Copaifera multijuga against Toxoplasma gondii in human villous (BeWo) and extravillous (HTR8/SVneo) trophoblast cells, as well as in human villous explants from third-trimester pregnancy. For this purpose, both cells and villous explants were infected or not with T. gondii, treated with hydroalcoholic extract or oleoresin from C. multijuga and analyzed for toxicity, parasite proliferation, cytokine and ROS production. In parallel, both cells were infected by tachyzoites pretreated with hydroalcoholic extract or oleoresin, and adhesion, invasion and replication of the parasite were observed. Our results showed that the extract and oleoresin did not trigger toxicity in small concentrations and were able to reduce the T. gondii intracellular proliferation in cells previously infected. Also, the hydroalcoholic extract and oleoresin demonstrated an irreversible antiparasitic action in BeWo and HTR8/SVneo cells. Next, adhesion, invasion and replication of T. gondii were dampened when BeWo or HTR8/SVneo cells were infected with pretreated tachyzoites. Finally, infected and treated BeWo cells upregulated IL-6 and downmodulated IL-8, while HTR8/SVneo cells did not change significantly these cytokines when infected and treated. Finally, both the extract and oleoresin reduced the T. gondii proliferation in human explants, and no significant changes were observed in relation to cytokine production. Thus, compounds from C. multijuga presented different antiparasitic activities that were dependent on the experimental model, being the direct action on tachyzoites a common mechanism operating in both cells and villi. Considering all these parameters, the hydroalcoholic extract and oleoresin from C. multijuga can be a target for the establishment of new therapeutic strategy for congenital toxoplasmosis.


Subject(s)
Fabaceae , Toxoplasmosis, Congenital , Pregnancy , Humans , Female , Trophoblasts , Placenta , Pregnancy Trimester, Third , Plant Extracts/pharmacology , Antiparasitic Agents , Cytokines
16.
Nat Prod Res ; 37(4): 618-627, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35514129

ABSTRACT

Fungal resistance to different therapeutic drugs has become a growing challenge. This crucial health problem requires new effective drug alternatives. Herein, we report the study of Eucalyptus botryoides' resin used in folk medicine as antimicrobial. Thus, E. botryoides' resin was extracted with aqueous-ethanol and fractionated using Sephadex chromatography, furnishing its major compounds. The crude extracts and the isolated compounds were evaluated for their in vitro antimicrobial activity against bacteria and yeasts. The crude extract displayed MIC of 25 µg/mL against S. salivarius, and for C. albicans, C. glabrata, and C. tropicalis the MIC were between 2.9 and 5.9 µg/mL. The 7-O-Methyl-aromadendrin was the most effective against C. glabrata and C. krusei (MIC = 1.6 µg/mL). 2-O-Galloyl-1,6-O-di-trans-p-coumaroyl-ß-D-glycopyranoside, first time reported, showed MIC of 3.1 µg/mL against C. glabrata and C. krusei. Overall, this work gave promising results, indicating that Eucalyptus botryoides' resin and its compounds have the potential for developing anti-yeast products.


Subject(s)
Anti-Infective Agents , Eucalyptus , Plant Extracts/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Bacteria , Yeasts , Microbial Sensitivity Tests , Antifungal Agents/chemistry
17.
Planta Med ; 89(2): 158-167, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36170858

ABSTRACT

Guttiferone E (GE) is a benzophenone found in Brazilian red propolis. In the present study, the effect of GE on human (A-375) and murine (B16-F10) melanoma cells was investigated. GE significantly reduced the cellular viability of melanoma cells in a time-dependent manner. In addition, GE demonstrated antiproliferative effect, with IC50 values equivalent to 9.0 and 6.6 µM for A-375 and B16-F10 cells, respectively. The treatment of A-375 cells with GE significantly increased cell populations in G0/G1 phase and decreased those in G2/M phase. Conversely, on B16-F10 cells, GE led to a significant decrease in the populations of cells in G0/G1 phase and concomitantly an increase in the population of cells in phase S. A significantly higher percentage of apoptotic cells was observed in A-375 (43.5%) and B16-F10 (49.9%) cultures after treatment with GE. Treatments with GE caused morphological changes and significant decrease to the melanoma cells' density. GE (10 µM) inhibited the migration of melanoma cells, with a higher rate of inhibition in B16-F10 cells (73.4%) observed. In addition, GE significantly reduced the adhesion of A375 cells, but showed no effect on B16-F10. Treatment with GE did not induce changes in P53 levels in A375 cultures. Molecular docking calculations showed that GE is stable in the active sites of the tubulin dimer with a similar energy to taxol chemotherapy. Taken together, the data suggest that GE has promising antineoplastic potential against melanoma.


Subject(s)
Antineoplastic Agents , Melanoma, Experimental , Melanoma , Humans , Animals , Mice , Cell Line, Tumor , Cell Proliferation , Molecular Docking Simulation , Antineoplastic Agents/therapeutic use , Benzophenones/pharmacology , Benzophenones/therapeutic use , Melanoma/drug therapy , Melanoma, Experimental/drug therapy , Mice, Inbred C57BL
18.
Sci Rep ; 12(1): 21165, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36477635

ABSTRACT

Bacterial and viral infections are serious public health issue. Therefore, this study aimed to evaluate the antibacterial, antibiofilm and antiviral potential of the Brazilian Red Propolis (BRP) crude hydroalcoholic extract, fractions, and isolated compounds, as well as their in vivo toxicity. The antibacterial activity was evaluated by determining the Minimum Inhibitory Concentration and the antibiofilm activity by determining the Minimum Inhibitory Concentration of Biofilm (MICB50). The viable bacteria count (Log10 UFC/mL) was also obtained. The antiviral assays were performed by infecting BHK-21 cells with Chikungunya (CHIKV) nanoluc. The toxicity of the BRP was evaluated in the Caenorhabditis elegans animal model. The MIC values for the crude hydroalcoholic extract sample ranged from 3.12 to 100 µg/mL, while fractions and isolated compounds the MIC values ranged from 1.56 to 400 µg/mL.The BRP crude hydroalcoholic extract, oblongifolin B, and gutiferone E presented MICB50 values ranging from 1.56 to 100 µg/mL against monospecies and multispecies biofilms. Neovestitol and vestitol inhibited CHIKV infection by 93.5 and 96.7%, respectively. The tests to evaluate toxicity in C. elegans demonstrated that the BRP was not toxic below the concentrations 750 µg/mL. The results constitute an alternative approach for treating various infectious diseases.


Subject(s)
Propolis , Animals , Propolis/pharmacology , Caenorhabditis elegans , Brazil , Plant Extracts/pharmacology
19.
Molecules ; 27(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36364137

ABSTRACT

Helicobacter pylori is a Gram-negative, microaerophilic, curved-rod, flagellated bacterium commonly found in the stomach mucosa and associated with different gastrointestinal diseases. With high levels of prevalence worldwide, it has developed resistance to the antibiotics used in its therapy. Brazilian red propolis has been studied due to its biological properties, and in the literature, it has shown promising antibacterial activities. The aim of this study was to evaluate anti-H. pylori from the crude hydroalcoholic extract of Brazilian red propolis (CHEBRP). For this, in vitro determination of the minimum inhibitory and bactericidal concentration (MIC/MBC) and synergistic activity and in vivo, microbiological, and histopathological analyses using Wistar rats were carried out using CHEBRP against H. pylori strains (ATCC 46523 and clinical isolate). CHEBRP presented MIC/MBC of 50 and 100 µg/mL against H. pylori strains (ATCC 43526 and clinical isolate, respectively) and tetracycline MIC/MBC of 0.74 µg/mL. The association of CHEBRP with tetracycline had an indifferent effect. In the stomach mucosa of rats, all treatments performed significantly decreased the number of H. pylori, and a concentration of 300 mg/kg was able to modulate the inflammatory response in the tissue. Therefore, CHEBRP showed promising anti-H. pylori in in vitro and in vivo assays.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Propolis , Rats , Animals , Propolis/pharmacology , Propolis/therapeutic use , Brazil , Rats, Wistar , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Immunity , Tetracyclines/pharmacology , Microbial Sensitivity Tests , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology
20.
Arch Oral Biol ; 143: 105520, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36049430

ABSTRACT

OBJECTIVE: This study aimed to evaluate the antibacterial activity of crude Brazilian red propolis (BRP) extract against anaerobic bacteria involved in primary endodontic infection. Additionally, we evaluate the cell viability and free radical production of human dental pulp fibroblasts (HDPF) in direct contact with mineral trioxide aggregate (MTA) and BRP. DESIGN: The Minimum Inhibitory Concentration, Minimum Bactericidal Concentration (MIC, MBC) and Minimum Inhibitory Concentration of Biofilm (MICB50) of BRP against anaerobic endodontic pathogens were determined. HDPF were exposed to BRP10 (10 µg/mL), BRP50 (50 µg/mL), MTA extract (1:1, 1:2, 1:4 e 1:8), dimethyl sulfoxide 0.5% (DMSO), and cell culture medium (DMEM). The groups were tested for cell viability (MTT assay), and free radical production (reactive oxygen species - ROS, DCFH-DA probe and nitric oxide - NO, Griess reagent). The one-way ANOVA and Tukey's tests were employed at a significance level of 5%. RESULTS: MIC/MBC values of BRP performed antibacterial activity for Parvimonas micra (6.25/6.25 µg/mL), Fusobacterium nucleatum (25/25 µg/mL), Prevotella melaninogenica (50/100 µg/mL), Prevotella nigrescens (50/100 µg/mL), Prevotella intermedia (50/100 µg/mL), and Porphyromonas gingivalis (50/200 µg/mL). The MICB50 values ranged from 1.56 to 50 µg/mL. BRP and MTA stimulated cell viability, emphasizing BRP10 (p = 0.007). Furthermore, it was observed that MTA 1:1, MTA 1:2, and BRP50 slightly increased ROS (p < 0.001) and NO production (p = 0.008, p = 0.007, and p < 0.001 respectively) compared to DMEM group. CONCLUSIONS: BRP exhibits good antibacterial activity against endodontic pathogens, and both BRP and MTA promote the viability of HDPF without increasing NO and ROS production.


Subject(s)
Propolis , Humans , Anti-Bacterial Agents/pharmacology , Brazil , Dimethyl Sulfoxide , Microbial Sensitivity Tests , Nitric Oxide , Plant Extracts/pharmacology , Propolis/pharmacology , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL