Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Neuroscience ; 387: 123-134, 2018 09 01.
Article in English | MEDLINE | ID: mdl-28890053

ABSTRACT

The present study evaluates the possible antinociceptive effect of chromosphere transplants in rats injected with 6-hydroxydopamine (6-OHDA), a model of Parkinson's disease. Male adult Wistar rats received 40µg/0.5µl of 6-OHDA or 0.5µl of vehicle into the left substantia nigra (SNc). Rats were evaluated for mechanical allodynia, cold allodynia, thermal hyperalgesia and formalin. Rats with altered nociceptive threshold were transplanted with chromospheres. After transplant, rats were evaluated every week. Our results confirm that 6-OHDA injection into rat's SNc reduces mechanical, thermal, and chemical thresholds. Interestingly, chromospheres' transplant reverted 6-OHDA-induced allodynia and hyperalgesia. The antinociceptive effect induced by chromospheres was dopamine D2- and opioid-receptor dependent since sulpiride or naltrexone reverted its effect.


Subject(s)
Nociception/drug effects , Nociception/physiology , Parkinsonian Disorders/physiopathology , Animals , Cells, Cultured , Male , Microinjections , Naltrexone/pharmacology , Oxidopamine/adverse effects , Pain Measurement , Parkinsonian Disorders/chemically induced , Rats , Substantia Nigra/drug effects , Sulpiride/pharmacology
2.
Bioelectromagnetics ; 37(8): 527-535, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27548757

ABSTRACT

The objective of the present study was to assess the benefits of 1-week repetitive transcranial magnetic stimulation (rTMS) in patients with chronic low back pain (LBP). The visual analogue scale (VAS), Short Form McGill pain questionnaire (SF-MPQ), and Short Form 36 Health Survey were used to evaluate the effect of this treatment. Eighty-two patients diagnosed with LBP were divided randomly into three groups: rTMS-treated group, sham group, and physical therapy-treated group. We observed a significant reduction in VAS and SF-MPQ scores in the rTMS-treated group, but not in the sham group. Moreover, patients who received rTMS had a lower mean pain score than patients treated with physical therapy. Our study suggests that rTMS produces safe, significant, and long-term relief in patients with LBP without evident side effects. This study shows for the first time that long-term repeated sessions of rTMS decrease pain perception of LBP. Bioelectromagnetics. 37:527-535, 2016. © 2016 Wiley Periodicals, Inc.

3.
Life Sci ; 91(25-26): 1243-51, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23123445

ABSTRACT

Chromaffin cell transplants have been explored since the early 1980s as a promising alternative in different pathological states, mainly Parkinson's disease and chronic pain. Advances are significant since transplants have been performed in humans. The general mechanism of these transplants relies in the capacity of chromaffin cells to act as mini-pumps that release amines and peptides. Different strategies are being used to improve the efficacy of transplants. However, a remaining hurdle is to determine the viability across time and the interaction with the microenvironment of the graft. We analyzed previous and current results finding that although there is a lot of positive evidence, there is also a lack of molecular studies that support behavioral results. The present review gives an update on recent advances of chromaffin cell transplants and their future in the clinic.


Subject(s)
Chromaffin Cells/transplantation , Chronic Pain/therapy , Parkinson Disease/therapy , Animals , Cellular Microenvironment , Chromaffin Cells/metabolism , Chronic Pain/physiopathology , Disease Models, Animal , Humans , Parkinson Disease/physiopathology , Time Factors
4.
Eur J Pharmacol ; 668(1-2): 147-54, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21741968

ABSTRACT

In the present study, the effect of chromaffin cell transplant in the spinal cord was evaluated on formalin-induced mechanical secondary allodynia in the rat. Chromaffin cells were transplanted into the lumbar subarachnoid space before or after formalin injection. Subcutaneous formalin injection (50 µl, 1%) produced long-lasting secondary allodynia in the ipsilateral and contralateral hind paws. Once secondary allodynia was established, treatment with chromaffin cells produced a significant reduction in the nociceptive behavior in both hind paws. The antiallodynic effect was time-dependent since it was observed 15 days after chromaffin cell transplants but not before. On the other hand, pre-treatment with chromaffin cells prevented the expression of secondary allodynia in both hind paws in the rat. Antiallodynic effect of chromaffin cells was reverted with the non-selective opioid receptor antagonist naltrexone and the non-selective α(2)-adrenoceptor antagonist rauwolscine. Clusters of viable chromaffin cells labeled with anti-tyrosine hydroxylase antibodies were observed in the retrieved transplants 15 days after transplant. These results establish the analgesic efficacy of intrathecal chromaffin cells on formalin-induced secondary allodynia. Our data suggest that chromaffin cells release neuroactive substances including opioid peptides and adrenergic amines that reduce secondary allodynia in rats through activation of their receptors.


Subject(s)
Chromaffin Cells/transplantation , Formaldehyde/adverse effects , Hyperalgesia/metabolism , Hyperalgesia/surgery , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Opioid/metabolism , Spinal Cord/pathology , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Animals , Cell Survival/drug effects , Female , Hyperalgesia/chemically induced , Hyperalgesia/pathology , Naltrexone/pharmacology , Narcotic Antagonists , Rats , Rats, Wistar , Spinal Cord/drug effects , Spinal Cord/metabolism , Yohimbine/pharmacology
5.
Pharmacol Biochem Behav ; 98(3): 417-24, 2011 May.
Article in English | MEDLINE | ID: mdl-21334366

ABSTRACT

This work analyzes the role of cholecystokinin (CCK) receptors, dynorphin A1₋17 and descending facilitation originated in the rostral ventromedial medulla (RVM) on secondary allodynia and hyperalgesia in formalin-injected rats. Formalin injection (50 µL, 1%, s.c.) produced acute nociception (lasting 1 h) and long-term secondary allodynia and hyperalgesia in ipsilateral and contralateral hind paws (lasting 1-12 days). Once established, intra-RVM administration of lidocaine at day 6, but not at 2, reversed secondary allodynia and hyperalgesia in rats. The injection of YM022 (CCK2 receptor antagonist), but not lorglumide (CCK1 receptor antagonist), into the RVM or spinal cord reversed both nociceptive behaviors. Pre-treatment with lidocaine, lorglumide or YM022 did not prevent the development of secondary allodynia or hyperalgesia regardless of the administration route. Formalin injection increased dynorphin content in the dorsal, but not the ventral, spinal cord sections at day 6. Moreover, intrathecal administration of dynorphin antiserum reversed, but was unable to prevent, secondary allodynia and hyperalgesia in both hind paws. These results suggest that formalin-induced secondary allodynia and hyperalgesia are maintained by activation of descending facilitatory mechanisms which are dependent on CCK2 receptors located in the RVM and spinal cord. In addition, data suggest that spinal dynorphin A1₋17 and CCK play an important role in formalin-induced secondary allodynia and hyperalgesia.


Subject(s)
Formaldehyde/pharmacology , Hyperalgesia/chemically induced , Receptors, Cholecystokinin/physiology , Animals , Dynorphins/metabolism , Female , Immune Sera , Medulla Oblongata/drug effects , Medulla Oblongata/physiopathology , Rats , Rats, Wistar , Spinal Cord/metabolism
6.
Eur J Pharmacol ; 631(1-3): 17-23, 2010 Apr 10.
Article in English | MEDLINE | ID: mdl-20079349

ABSTRACT

The possible antiallodynic effect of phosphodiesterase 5 inhibitor sildenafil and nitric oxide donor glyceryl trinitrate as well as the changes in phosphodiesterase 5A2 mRNA expression in dorsal root ganglion and spinal cord of allodynic diabetic rats was assessed. Diabetes was induced by streptozotocin (50mg/kg, i.p.) in male Wistar rats. Streptozotocin injection produced hyperlglycemia, polydipsia, polyphagia and polyuria as well as long-term tactile allodynia (12 weeks) and a reduction of phosphodiesterase 5A2 mRNA expression in spinal cord of diabetic rats. Systemic administration of sildenafil (1-5.6 mg/kg, i.p.) reduced tactile allodynia in a dose-dependent manner in diabetic rats. Likewise, glyceryl trinitrate patches (0.2mg/h) also reduced tactile allodynia in diabetic rats. Moreover, both drugs reversed streptozotocin-induced phosphodiesterase 5A2 mRNA expression reduction. Our results indicate that glyceryl trinitrate and sildenafil reduce tactile allodynia in diabetic rats suggesting that nitric oxide and cyclic GMP supply is an important step in their mechanism of action of these drugs in diabetic animals. Data suggest that nitric oxide donors (as glyceryl trinitrate) and drugs which increase cyclic GMP levels (as sildenafil) could have a role in the pharmacotherapy of tactile allodynia in diabetic patients.


Subject(s)
Analgesics/therapeutic use , Diabetic Neuropathies/drug therapy , Hyperalgesia/drug therapy , Nitric Oxide Donors/therapeutic use , Nitroglycerin/therapeutic use , Phosphodiesterase Inhibitors/therapeutic use , Piperazines/therapeutic use , Sulfones/therapeutic use , Touch , Administration, Cutaneous , Animals , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/metabolism , Dose-Response Relationship, Drug , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Isoenzymes , Male , Nitric Oxide Donors/administration & dosage , Nitroglycerin/administration & dosage , Pain Measurement , Phosphodiesterase 5 Inhibitors , Phosphodiesterase Inhibitors/administration & dosage , Piperazines/administration & dosage , Posterior Horn Cells/drug effects , Posterior Horn Cells/metabolism , Purines/administration & dosage , Purines/therapeutic use , RNA, Messenger/metabolism , Rats , Rats, Wistar , Sildenafil Citrate , Streptozocin , Sulfones/administration & dosage , Time Factors
7.
Eur J Pharmacol ; 619(1-3): 25-32, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19686723

ABSTRACT

This study assesses the effects of peripheral or intrathecal pre-treatment or post-treatment with micro, delta, kappa and nociceptin/orphanin FQ (NOP) opioid receptor agonists (morphine, U-50488 [trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide hydrochloride], DADLE [D-Ala2-Leu5-enkephalin] and nociceptin, respectively) on formalin-induced secondary mechanical allodynia and hyperalgesia in rats. 1% Formalin injection produced acute nociceptive behaviors (flinching and licking/lifting) followed by long-term tactile secondary allodynia and hyperalgesia. Neither peripheral (into the formalin-injected paw) nor intrathecal morphine post-treatment reversed formalin-induced secondary allodynia and hyperalgesia. In contrast, morphine pre-treatment prevented the development of these pain behaviors. Intrathecal and peripheral post- but not pre-treatment with U-50488 or DADLE significantly reduced secondary allodynia and hyperalgesia. Interestingly, nociceptin reduced both pain behaviors regardless of the administration site or treatment time. Local antinociceptive effects of morphine, DADLE, U-50488 or nociceptin were blocked by naltrexone, naltrindole, 5-guanidinonaltrindole and [Nphe(1)]nociceptin(1-13)NH(2), respectively. These results suggest that the long-term nociceptive behaviors induced by formalin are differentially modulated by selective opioid receptor agonists. In addition, data suggest that peripheral and spinal delta and kappa opioid receptors are important when nociceptive behaviors are established. In contrast, micro opioid receptors are more important at the beginning of the injury when the sensory system has not changed. NOP receptors participate diminishing both the development and maintenance of nociceptive behaviors. Results suggest that a barrage of afferent input induced by formalin injection initiates a long-term differential change in peripheral and spinal processing that affect the efficacy of opioid receptor agonists.


Subject(s)
Formaldehyde/pharmacology , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Pain/chemically induced , Pain/metabolism , Receptors, Opioid/metabolism , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Behavior, Animal/drug effects , Enkephalin, Leucine-2-Alanine/pharmacology , Enkephalin, Leucine-2-Alanine/therapeutic use , Female , Hyperalgesia/drug therapy , Morphine/pharmacology , Morphine/therapeutic use , Pain/drug therapy , Rats , Rats, Wistar , Receptors, Opioid/agonists , Nociceptin Receptor
8.
Life Sci ; 84(15-16): 489-98, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19223003

ABSTRACT

AIMS: Melatonin is a hormone synthesized principally in the pineal gland that has been classically associated with endocrine actions. However, several lines of evidence suggest that melatonin plays a role in pain modulation. This paper reviews the available evidence on melatonin's analgesic effects in animals and human beings. MAIN METHODS: A medline search was performed using the terms "melatonin", "inflammatory pain", "neuropathic pain", "functional pain", "rats", "mice", "human", "receptors", "opioid" and "free radicals" in combinations. KEY FINDINGS: The antinociceptive effect of melatonin has been evaluated in diverse pain models, and several findings show that melatonin receptors modulate pain mechanisms as activation induces an antinociceptive effect at spinal and supraspinal levels under conditions of acute and inflammatory pain. More recently, melatonin induced-antinociception has been extended to neuropathic pain states. This effect agrees with the localization of melatonin receptors in thalamus, hypothalamus, dorsal horn of the spinal cord, spinal trigeminal tract, and trigeminal nucleus. The effects of melatonin result from activation of MT(1) and MT(2) melatonin receptors, which leads to reduced cyclic AMP formation and reduced nociception. In addition, melatonin is able to activate opioid receptors indirectly, to open several K(+) channels and to inhibit expression of 5-lipoxygenase and cyclooxygenase 2. This hormone also inhibits the production of pro-inflammatory cytokines, modulates GABA(A) receptor function and acts as a free radical scavenger. SIGNIFICANCE: Melatonin receptors constitute attractive targets for developing analgesic drugs, and their activation may prove to be a useful strategy to generate analgesics with a novel mechanism of action.


Subject(s)
Melatonin/physiology , Pain/drug therapy , Pineal Gland/metabolism , Analgesics/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Humans , Melatonin/biosynthesis , Melatonin/therapeutic use , Pain/metabolism , Receptors, Melatonin/biosynthesis , Receptors, Melatonin/physiology , Signal Transduction
9.
Methods Find Exp Clin Pharmacol ; 30(6): 431-41, 2008.
Article in English | MEDLINE | ID: mdl-18850044

ABSTRACT

Anticonvulsants, including gabapentin and carbamazepine, have shown activity against several types of neuropathic pain; however, they have limiting side effects that may minimize their use. In this study the possible synergistic interaction between anticonvulsants and benfotiamine or cyanocobalamin on spinal nerve ligation-induced tactile allodynia was assessed. Oral administration of gabapentin (15-300 mg/kg), carbamazepine (10-300 mg/kg), benfotiamine (30-600 mg/kg) or cyanocobalamin (0.3-6.0 mg/kg) significantly reduced tactile allodynia in rats. Maximal antiallodynic effects were reached with gabapentin 300 mg/kg (approximately 70%), carbamazepine 300 mg/kg (approximately 66%), benfotiamine 600 mg/kg (approximately 51%) and cyanocobalamin 6 mg/kg (approximately 59%). At the highest tested doses, gabapentin, but not carbamazepine, benfotiamine or cyanocobalamin, significantly reduced motor coordination. Coadministration of gabapentin or carbamazepine with benfotiamine or cyanocobalamin in a fixed ratio markedly reduced spinal nerve ligation-induced tactile allodynia, showing a synergistic interaction between anticonvulsants and B vitamins. Data indicate that combinations of anticonvulsants with benfotiamine or cyanocobalamin are able to reduce tactile allodynia without affecting motor coordination in rats, and suggest the possible clinical use of these combinations in the treatment of neuropathic pain in humans.


Subject(s)
Amines/pharmacology , Analgesics , Anticonvulsants/pharmacology , Carbamazepine/pharmacology , Cyclohexanecarboxylic Acids/pharmacology , Pain/drug therapy , Peripheral Nervous System Diseases/drug therapy , Thiamine/analogs & derivatives , Vitamin B 12/pharmacology , Vitamin B Complex/pharmacology , gamma-Aminobutyric Acid/pharmacology , Animals , Drug Synergism , Female , Gabapentin , Ligation , Pain/etiology , Pain Measurement/drug effects , Peripheral Nervous System Diseases/etiology , Peripheral Nervous System Diseases/pathology , Physical Stimulation , Psychomotor Performance/drug effects , Rats , Rats, Wistar , Spinal Nerves/pathology , Thiamine/pharmacology
10.
CNS Neurosci Ther ; 14(3): 234-47, 2008.
Article in English | MEDLINE | ID: mdl-18684235

ABSTRACT

Resveratrol is a phytoalexin structurally related to stilbenes, which is synthesized in considerable amounts in the skin of grapes, raspberries, mulberries, pistachios and peanuts, and by at least 72 medicinal and edible plant species in response to stress conditions. It was isolated in 1940 and did not maintain much interest for around five decades until its role in treatment of cardiovascular diseases was suggested. To date, resveratrol has been identified as an agent that may be useful to treat cancer, pain, inflammation, tissue injury, and other diseases. However, currently the attention is being focused in analyzing its properties against neurodegenerative diseases and as antiaging compound. It has been reported that resveratrol shows effects in in vitro models of epilepsy, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and nerve injury. However, evidences in vivo as well as in human beings are still lacking. Thus, further investigations on the pharmacological effects of resveratrol in vivo are necessary before any conclusions on its effects on neurodegenerative diseases can be obtained.


Subject(s)
Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Stilbenes/pharmacology , Terpenes/pharmacology , Animals , Humans , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Pain/drug therapy , Resveratrol , Sesquiterpenes , Stilbenes/chemistry , Stilbenes/pharmacokinetics , Phytoalexins
11.
Eur J Pharmacol ; 577(1-3): 203-10, 2007 Dec 22.
Article in English | MEDLINE | ID: mdl-17920585

ABSTRACT

The purpose of this study was to assess the antinociceptive and antiallodynic effect of melatonin as well as its possible mechanism of action in diabetic rats. Streptozotocin (50 mg/kg) injection caused hyperglycemia within 1 week. Formalin-evoked flinching was increased in diabetic rats as compared to non-diabetic rats. Oral administration of melatonin (10-300 mg/kg) dose-dependently reduced flinching behavior in diabetic rats. In addition, K-185 (a melatonin MT(2) receptor antagonist, 0.2-2 mg/kg, s.c.) completely blocked the melatonin-induced antinociception in diabetic rats, whereas that naltrexone (a non-selective opioid receptor antagonist, 1 mg/kg, s.c.) and naltrindole (a selective delta opioid receptor antagonist, 0.5 mg/kg, s.c.), but not 5'-guanidinonaltrindole (a selective kappa opioid receptor antagonist, 1 mg/kg, s.c.), partially reduced the antinociceptive effect of melatonin. Given alone K-185, naltrexone, naltrindole or 5'-guanidinonaltrindole did not modify formalin-induced nociception in diabetic rats. Four to 8 weeks after diabetes induction, tactile allodynia was observed in the streptozotocin-injected rats. On this condition, oral administration of melatonin (75-300 mg/kg) dose-dependently reduced tactile allodynia in diabetic rats. Both antinociceptive and antiallodynic effects were not related to motor changes as melatonin did not modify number of falls in the rotarod test. Results indicate that melatonin is able to reduce formalin-induced nociception and tactile allodynia in streptozotocin-injected rats. In addition, data suggest that melatonin MT(2) and delta opioid receptors may play an important role in these effects.


Subject(s)
Analgesics , Diabetes Mellitus, Experimental/complications , Formaldehyde , Melatonin/pharmacology , Pain Measurement/drug effects , Pain/drug therapy , Animals , Behavior, Animal/drug effects , Female , Guanidines/pharmacology , Indoles/pharmacology , Melatonin/antagonists & inhibitors , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Pain/etiology , Pain Threshold/drug effects , Physical Stimulation , Postural Balance/drug effects , Rats , Rats, Wistar , Receptor, Melatonin, MT2/antagonists & inhibitors
12.
Eur J Pharmacol ; 573(1-3): 75-83, 2007 Nov 14.
Article in English | MEDLINE | ID: mdl-17643411

ABSTRACT

The purpose of this study was to assess the possible antiallodynic effect of asimadoline ([N-methyl-N-[1S)-1-phenyl)-2-(13S))-3-hydroxypyrrolidine-1-yl)-ethyl]-2,2-diphenylacetamide HCl]) and ICI-20448 ([2-[3-(1-(3,4-Dichlorophenyl-N-methylacetamido)-2-pyrrolidinoethyl)-phenoxy]acetic acid HCl]), two peripheral selective kappa opioid receptor agonists, after subcutaneous, spinal and periaqueductal grey administration to neuropathic rats. Twelve days after spinal nerve ligation tactile allodynia was observed, along with an increase in kappa opioid receptor mRNA expression in dorsal root ganglion and dorsal horn spinal cord. A non-significant increase in periaqueductal grey was also seen. Subcutaneous (s.c.) administration of asimadoline and ICI-204448 (1-30 mg/kg) dose-dependently reduced tactile allodynia. This effect was partially blocked by s.c., but not intrathecal, naloxone. Moreover, intrathecal administration of asimadoline or ICI-204448 (1-30 mug) reduced tactile allodynia in a dose-dependent manner and this effect was completely blocked by intrathecal naloxone. Microinjection of both kappa opioid receptor agonists (3-30 mug) into periaqueductal grey also produced a naloxone-sensitive antiallodynic effect in rats. Our results indicate that systemic, intrathecal and periaqueductal grey administration of asimadoline and ICI-204448 reduces tactile allodynia. This effect may be a consequence of an increase in kappa opioid receptor mRNA expression in dorsal root ganglion, dorsal horn spinal cord and, to some extent, in periaqueductal grey. Finally, our data suggest that these drugs could be useful to treat neuropathic pain in human beings.


Subject(s)
Acetamides/pharmacology , Periaqueductal Gray/drug effects , Pyrrolidines/pharmacology , Somatosensory Disorders/prevention & control , Acetamides/administration & dosage , Animals , Dose-Response Relationship, Drug , Female , Injections, Spinal , Injections, Subcutaneous , Ligation/adverse effects , Ligation/methods , Lumbosacral Plexus/injuries , Male , Naloxone/administration & dosage , Naloxone/pharmacology , Pain Threshold/drug effects , Periaqueductal Gray/metabolism , Periaqueductal Gray/physiopathology , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/physiopathology , Peripheral Nervous System Diseases/prevention & control , Pyrrolidines/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/genetics , Receptors, Opioid, kappa/physiology , Reverse Transcriptase Polymerase Chain Reaction , Somatosensory Disorders/etiology , Somatosensory Disorders/physiopathology , Time Factors
13.
Pain ; 132(3): 273-280, 2007 Dec 05.
Article in English | MEDLINE | ID: mdl-17346886

ABSTRACT

The antiallodynic effect of melatonin after intrathecal (it) and oral administration as well as the possible participation of MT(2) and opioid receptors in melatonin-induced antiallodynia in neuropathic rats were assessed. Ligation of the L5/L6 spinal nerves produced a clear-cut tactile allodynia in the rats. Intrathecal (3-100 microg) and oral (37.5-300 mg/kg) administration of melatonin decreased tactile allodynia induced by spinal nerve ligation. Intrathecal administration of the preferential MT(2) receptor antagonist luzindole (1-100 microg), but not vehicle, significantly diminished in a dose-dependent manner the antiallodynic effect induced by melatonin (100 microg, it). Oral (0.01-1mg/kg) or intrathecal (0.1-10 microg) administration of the highly selective MT(2) receptor antagonist 4P-PDOT diminished the antiallodynic activity induced by oral (150 mg/kg) or intrathecal (100 microg) administration of melatonin, respectively. Subcutaneous (1mg/kg) or intrathecal (0.5-50 microg) treatment with naltrexone, but not vehicle, significantly diminished the antiallodynic effect induced by oral (150 mg/kg) or intrathecal (100 microg) administration of melatonin. Oral melatonin (150 mg/kg)-induced antiallodynia was partially reduced by the spinal administration of 4P-PDOT (10 microg). Moreover, the spinal effect of melatonin (100 microg) was significantly reduced by the combination 4P-PDOT (0.1 microg)-naltrexone (0.5 microg). At the greatest tested doses, the antagonist drugs did not modify tactile allodynia in neuropathic rats. Melatonin (100 microg or 300 mg/kg) did not affect motor co-ordination in the rotarod test. Results indicate that melatonin reduces tactile allodynia in neuropathic rats after intrathecal and oral administration. Moreover, data suggest the participation of spinal MT(2) and opioid receptors in the melatonin-induced antiallodynic effect in this model.


Subject(s)
Melatonin/administration & dosage , Pain/drug therapy , Pain/metabolism , Receptor, Melatonin, MT2/metabolism , Receptors, Opioid/metabolism , Administration, Oral , Animals , Female , Injections, Spinal , Pain/physiopathology , Physical Stimulation/methods , Rats , Rats, Wistar , Receptor, Melatonin, MT2/agonists , Spinal Cord/drug effects , Spinal Cord/metabolism , Touch/drug effects , Touch/physiology
14.
Pharmacol Biochem Behav ; 84(3): 535-42, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16899286

ABSTRACT

The possible participation of the nitric oxide (NO)-cyclic GMP-protein kinase G (PKG)-K+ channels pathway in the antiallodynic action of resveratrol and YC-1 in spinal nerve injured rats was assessed. Ligation of L5/L6 spinal nerves produced a clear-cut tactile allodynia in the rats. Intrathecal administration of resveratrol (100-600 microg) and 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (0.1-2.7 microg, YC-1, a soluble guanylyl cyclase activator) decreased tactile allodynia induced by ligation of L5/L6 spinal nerves. Intrathecal treatment with NG-L-nitro-arginine methyl ester (10-100 microg, L-NAME, a NO synthase inhibitor), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (1-10 microg, ODQ, a soluble guanylyl cyclase inhibitor), KT-5823 (5-500 ng, a PKG inhibitor) and iberiotoxin (5-500 ng, a large-conductance Ca2+ -activated K+ channel blocker), but not NG-D-nitro-arginine methyl ester (100 microg, D-NAME, an inactive isomer of L-NAME), glibenclamide (12.5-50 microg, ATP-sensitive K+ channel blocker) or vehicle, significantly diminished resveratrol (300 microg)- and YC-1 (2.7 microg)-induced spinal antiallodynia. These effects were independent of prostaglandin synthesis inhibition as indomethacin did not affect resveratrol-induced antiallodynia. Results suggest that resveratrol and YC-1 could activate the proteins of the NO-cyclic GMP-PKG spinal pathway or large-conductance Ca2+ -activated, but not ATP-sensitive, K+ channels at the spinal cord in order to produce at least part of their antiallodynic effect in this model of neuropathy.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Nitric Oxide/chemistry , Potassium/chemistry , Stilbenes/pharmacology , Animals , Antioxidants/pharmacology , Dose-Response Relationship, Drug , Female , Glyburide/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Peptides/pharmacology , Rats , Rats, Wistar , Resveratrol , Spine/drug effects
15.
Eur J Pharmacol ; 512(2-3): 121-7, 2005 Apr 11.
Article in English | MEDLINE | ID: mdl-15840396

ABSTRACT

The mechanism of the antinociceptive action of the phosphodiesterase 5 inhibitor, sildenafil, was assessed in the formalin test. Local peripheral ipsilateral, but not contralateral, administration of sildenafil (50-200 microg/paw) produced a dose-related antinociception during both phases of the formalin test. The local peripheral pretreatment with protein kinase G inhibitor peptide (PKG inhibitor, 0.01-1 microg/paw), charybdotoxin (large- and intermediate-conductance Ca2+-activated K+ channel blocker, 0.01-1 microg/paw), apamin (small-conductance Ca2+-activated K+ channel blocker, 0.1-2 microg/paw), tolbutamide (ATP-sensitive K+ channel blocker, 12.5-50 microg/paw), and tetraethylammonium (non-selective voltage-dependent K+ channel blocker, 12.5-50 microg/paw), but not 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ, inhibitor of guanylyl cyclase, 12.5-50 microg/paw) or saline, significantly diminished in a dose-dependent manner sildenafil-induced local peripheral antinociception. Given alone, local peripheral administration of inhibitors did not modify formalin-induced nociceptive behavior. Results suggest that sildenafil produces its local peripheral antinociceptive effect via activation of the cyclic GMP-PKG-K+ channel pathway.


Subject(s)
Analgesics/pharmacology , Pain/prevention & control , Piperazines/pharmacology , Animals , Apamin/pharmacology , Charybdotoxin/pharmacology , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Female , Formaldehyde , Guanylate Cyclase/antagonists & inhibitors , Injections, Subcutaneous , Oxadiazoles/pharmacology , Pain/chemically induced , Pain Measurement/methods , Potassium Channel Blockers/pharmacology , Purines , Quinoxalines/pharmacology , Rats , Rats, Wistar , Sildenafil Citrate , Sulfones , Tetraethylammonium/pharmacology , Time Factors , Tolbutamide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL