Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 670: 337-347, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38763029

ABSTRACT

Electroactive coatings for smart wearable textiles based on a furan bio-epoxy monomer (BOMF) crosslinked with isophorone diamine (IPD) and additivated with carbon nanotubes (CNTs) are reported herein. The effect of BOMF/IPD molar ratio on the curing reaction, as well as on the properties of the crosslinked resins was first assessed, and it was found that 1.5:1 BOMF/IPD molar ratio provided higher heat of reaction, glass transition temperature, and mechanical performance. The resin was then modified with CNT to prepare electrically conductive nanocomposite films, which exhibited conductivity values increased by eight orders of magnitude upon addition of 5 phr of CNTs. The epoxy/CNT nanocomposites were finally applied as coatings onto a cotton fabric to develop electrically conductive, hydrophobic and breathable textiles. Notably, the integration of CNTs imparted efficient and reversible electrothermal behavior to the cotton fabric, showcasing its potential application in smart and comfortable wearable electronic devices.

2.
Sci Rep ; 14(1): 3663, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351239

ABSTRACT

Mining has led to severe environmental pollution in countries with exhaustive mining production and inadequate industrial waste regulation. Microorganisms in contaminated sites, like mine tailings, have adapted to high concentrations of heavy metals, developing the capacity of reducing or removing them from these environments. Therefore, it is essential to thoroughly characterize bacteria present in these sites to find different ways of bioremediation. In this regard, in this study, an enrichment and isolation procedure were performed to isolate bacteria with lower nutritional requirements and high tolerance to Cu(II) and Fe(II) from two Sonoran River basin mining tails. Two Staphylococcus species and a Microbacterium ginsengisoli strain were isolated and identified from the San Felipe de Jesús mining tail. Also, three strains were isolated from the Nacozari de García mining tail: Burkholderia cenocepacia, Sphingomonas sp. and Staphylococcus warneri. Significant microbiological differences were found between the two sites. All these species exhibited tolerance up to 300 mg/L for Cu (II)-Fe (II) solutions, indicating their capacity to grow in these conditions. Moreover, a consortium of isolated bacteria was immobilized in two different biocomposites and the biocomposite with larger pore size achieved greater bacterial immobilization showcasing the potential of these bacteria in biotechnological applications.


Subject(s)
Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Industrial Waste/analysis , Mining , Biodegradation, Environmental , Bacteria , Soil Pollutants/analysis
3.
Polymers (Basel) ; 14(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36559757

ABSTRACT

Due to a very low mixing entropy, most of the polymer pairs are immiscible. As a result, mixing polymers of different natures in a typical mechanical recycling process leads to materials with multiple interfaces and scarce interfacial adhesion and, consequently, with unacceptably low mechanical properties. Adding nanoparticles to multiphase polymeric matrices represents a viable route to mitigate this drawback of recycled plastics. Here, we use low amounts of organo-modified clay (Cloisite® 15A) to improve the performance of a ternary blend made of high-density polyethylene (HDPE), polypropylene (PP), and polyethylene terephtalate (PET). Rather than looking for the inherent reinforcing action of the nanofiller, this goal is pursued by using nanoparticles as a clever means to manipulate the micro-scale arrangement of the polymer phases. Starting from theoretical calculations, we obtained a radical change in the blend microstructure upon the addition of only 2-wt.% of nanoclay, with the obtaining of a finer morphology with an intimate interpenetration of the polymeric phases. Rather than on flexural and impact properties, this microstructure, deliberately promoted by nanoparticles, led to a substantial increase (>50 °C) of a softening temperature conventionally defined from dynamic-mechanical measurements.

4.
Polymers (Basel) ; 14(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36559900

ABSTRACT

The use of lignocellulose-rich biowaste as reinforcing filler in biodegradable polymers represents a sustainable option to obtain cost-effective bio-based materials to be used for several applications. In addition, the scarce polymer-biofiller interaction can be improved by reactive functionalization of the matrix. However, the obtained biocomposites might show high thermal deformability and possibly a slow biodegradation rate. In this work, polylactic acid (PLA) was first chemically modified with itaconic anhydride, and then biocomposites containing 50 wt.% of pecan (Carya illinoinensis) nutshell (PNS) biowaste were prepared and characterized. Their physical and morphological properties were determined, along with their biodegradation behavior in soil. Moreover, the effects of two environmentally friendly physical treatments, namely ball-milling of the filler and thermal annealing on biocomposites, were assessed. Grafting increased PLA thermal-oxidative stability and crystallinity. The latter was further enhanced by the presence of PNS, achieving a 30% overall increase compared to the plain matrix. Accordingly, the biocomposites displayed mechanical properties comparable to those of the plain matrix. Thermal annealing dramatically increased the mechanical and thermomechanical properties of all materials, and the heat deflection temperature of the biocomposites dramatically increased up to 60 °C with respect to the non-annealed samples. Finally, PNS promoted PLA biodegradation, triggering the swelling of the composites under soil burial, and accelerating the removal of the polymer amorphous phase. These results highlight the potential of combining natural fillers and environmentally benign physicochemical treatments to tailor the properties of PLA biocomposites. The high biofiller content used in this work, in conjunction with the chemical and physico-mechanical treatments applied, increased the thermal, mechanical, and thermomechanical performance of PLA biocomposites while improving their biodegradation behavior. These outcomes allow for widening the application field of PLA biocomposites in those areas requiring a stiff and lightweight material with low deformability and faster biodegradability.

5.
ACS Appl Mater Interfaces ; 14(13): 14842-14858, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35319184

ABSTRACT

Liquid crystalline elastomers (LCEs) have emerged as an important class of functional materials that are suitable for a wide range of applications, such as sensors, actuators, and soft robotics. The unique properties of LCEs originate from the combination between liquid crystal and elastomeric network. The control of macroscopic liquid crystalline orientation and network structure is crucial to realizing the useful functionalities of LCEs. A variety of chemistries have been developed to fabricate LCEs, including hydrosilylation, free radical polymerization of acrylate, and polyaddition of epoxy and carboxylic acid. Over the past few years, the use of click chemistry has become a more robust and energy-efficient way to construct LCEs with desired structures. This article provides an overview of emerging LCEs based on click chemistries, including aza-Michael addition between amine and acrylate, radical-mediated thiol-ene and thiol-yne reactions, base-catalyzed thiol-acrylate and thiol-epoxy reactions, copper-catalyzed azide-alkyne cycloaddition, and Diels-Alder cycloaddition. The similarities and differences of these reactions are discussed, with particular attention focused on the strengths and limitations of each reaction for the preparation of LCEs with controlled structures and orientations. The compatibility of these reactions with the traditional and emerging processing techniques, such as surface alignment and additive manufacturing, are surveyed. Finally, the challenges and opportunities of using click chemistry for the design of LCEs with advanced functionalities and applications are discussed.

6.
Int J Biol Macromol ; 200: 350-361, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34998889

ABSTRACT

Biodegradable polymer composites reinforced with agri-food lignocellulosic biowaste represent cost-effective and sustainable materials potentially able to replace traditional composites for structural, household, and packaging applications. Herein, the preparation of polylactic acid (PLA)/pecan (Carya illinoinensis) nutshell (PNS) biocomposites at high filler loading (50 wt%) is reported, alongside the effect of two environmentally friendly physical treatments, namely ball-milling of the filler and thermal annealing on biocomposites. PNS enhanced the thermal stability, the viscoelastic response, and the crystallinity of the polymer. Furthermore, filler ball-milling also increased the melt fluidity of the biocomposites, potentially improving melt processing. Finally, the presence of PNS remarkably enhanced the effect of thermal annealing in the compounds. In particular, heat deflection temperature of the biocomposites dramatically increased, up to 60 °C with respect to the non-annealed samples. Overall, these results emphasize the potential of combining natural fillers and environmentally benign physical treatments to tailor the properties of PLA biocomposites, especially for those applications which require a stiff and lightweight material with low deformability.


Subject(s)
Polyesters
7.
Nanomaterials (Basel) ; 11(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34947671

ABSTRACT

The efficiency of photomobile polymers (PMP) in the conversion of light into mechanical work plays a fundamental role in achieving cutting-edge innovation in the development of novel applications ranging from energy harvesting to sensor approaches. Because of their photochromic properties, azobenzene monomers have been shown to be an efficient material for the preparation of PMPs with appropriate photoresponsivity. Upon integration of the azobenzene molecules as moieties into a polymer, they act as an engine, allowing fast movements of up to 50 Hz. In this work we show a promising approach for integrating ZnO nanoparticles into a liquid crystalline polymer network. The addition of such nanoparticles allows the trapping of incoming light, which acts as diffusive points in the polymer matrix. We characterized the achieved nanocomposite material in terms of thermomechanical and optical properties and finally demonstrated that the doped PMP was better performing that the undoped PMP film.

8.
Sci Rep ; 11(1): 19479, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593897

ABSTRACT

Microplastics released from textiles during the washing process represent the most prevalent type of microparticles found in different environmental compartments and ecosystems around the world. Release of microfibres during the washing process of synthetic textiles is due to the mechanical and chemical stresses that clothes undergo in washing machines. Several washing process parameters, conditions, formulations of laundering additives have been correlated to microfibre release and some of them have been identified to affect microfibre release during washing process, while no correlation has been evaluated between microfibre release and washing load. In the present study, microfibre release was evaluated as function of the washing load in a real washing process, indicating a progressive decrease of microfibre release with increasing washing load. The quantity of released microfibres increased by around 5 times by decreasing the washing load due to a synergistic effect between water-volume to fabric ratio and mechanical stress during washing. Moreover, the higher mechanical stress to which the fabric is subjected in the case of a low washing load, hinders the discrimination of the effect on the release of other washing parameters like the type of detergent and laundry additives used.

9.
Front Cell Infect Microbiol ; 11: 702676, 2021.
Article in English | MEDLINE | ID: mdl-34490142

ABSTRACT

Clinical manifestations of leishmaniasis range from self-healing, cutaneous lesions to fatal infections of the viscera. With no preventative Leishmania vaccine available, the frontline option against leishmaniasis is chemotherapy. Unfortunately, currently available anti-Leishmania drugs face several obstacles, including toxicity that limits dosing and emergent drug resistant strains in endemic regions. It is, therefore, imperative that more effective drug formulations with decreased toxicity profiles are developed. Previous studies had shown that 2-(((5-Methyl-2-thienyl)methylene)amino)-N-phenylbenzamide (also called Retro-2) has efficacy against Leishmania infections. Structure-activity relationship (SAR) analogs of Retro-2, using the dihydroquinazolinone (DHQZ) base structure, were subsequently described that are more efficacious than Retro-2. However, considering the hydrophobic nature of these compounds that limits their solubility and uptake, the current studies were initiated to determine whether the solubility of Retro-2 and its SAR analogs could be enhanced through encapsulation in amphiphilic polymer nanoparticles. We evaluated encapsulation of these compounds in the amphiphilic, thermoresponsive oligo(ethylene glycol) methacrylate-co-pentafluorostyrene (PFG30) copolymer that forms nanoparticle aggregates upon heating past temperatures of 30°C. The hydrophobic tracer, coumarin 6, was used to evaluate uptake of a hydrophobic molecule into PFG30 aggregates. Mass spectrometry analysis showed considerably greater delivery of encapsulated DHQZ analogs into infected cells and more rapid shrinkage of L. amazonensis communal vacuoles. Moreover, encapsulation in PFG30 augmented the efficacy of Retro-2 and its SAR analogs to clear both L. amazonensis and L. donovani infections. These studies demonstrate that encapsulation of compounds in PFG30 is a viable approach to dramatically increase bioavailability and efficacy of anti-Leishmania compounds.


Subject(s)
Leishmania , Leishmaniasis , Animals , Biological Availability , Leishmaniasis/drug therapy , Mice , Mice, Inbred BALB C , Polymers
10.
Molecules ; 26(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066573

ABSTRACT

Herein, smart coatings based on photo-responsive polymer nanocapsules (NC) and deposited by laser evaporation are presented. These systems combine remotely controllable release and high encapsulation efficiency of nanoparticles with the easy handling and safety of macroscopic substrates. In particular, azobenzene-based NC loaded with active molecules (thyme oil and coumarin 6) were deposited through Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on flat inorganic (KBr) and organic (polyethylene, PE) and 3D (acrylate-based micro-needle array) substrates. SEM analyses highlighted the versatility and performance of MAPLE in the fabrication of the designed smart coatings. DLS analyses, performed on both MAPLE- and drop casting-deposited NC, demonstrated the remarkable adhesion achieved with MAPLE. Finally, thyme oil and coumarin 6 release experiments further demonstrated that MAPLE is a promising technique for the realization of photo-responsive coatings on various substrates.

11.
Polymers (Basel) ; 13(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067280

ABSTRACT

Organic dyes are extensively used in many industrial sectors, and their uncontrolled disposal into wastewaters raises serious concerns for environmental and human health. Due to the large variety of such pollutants, an effective remediation strategy should be characterized by a broad-spectrum efficacy. A promising strategy is represented by the combination of different adsorbent materials with complementary functionalities to develop composite materials that are expected to remove different contaminants. In the present work, a broad-spectrum adsorbent was developed by embedding zeolite 13X powder (ZX) in a chitosan (CS) aerogel (1:1 by weight). The CS-ZX composite adsorbent removes both anionic (indigo carmine, IC) and cationic (methylene blue, MB) dyes effectively, with a maximum uptake capacity of 221 mg/g and 108 mg/g, respectively. In addition, the adsorption kinetics are rather fast, with equilibrium conditions attained in less than 2 h. The composite exhibits good mechanical properties in both dry and wet state, which enables its handling for reusability purposes. In this regard, preliminary tests show that the full restoration of the IC removal ability over three adsorption-desorption cycles is achieved using a 0.1 M NaOH aqueous solution, while a 1 M NaCl aqueous solution allows one to preserve >60% of the MB removal ability.

12.
Polymers (Basel) ; 12(8)2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32722585

ABSTRACT

Thermosetting polymers have been widely used in many industrial applications as adhesives, coatings and laminated materials, among others. Recently, bisphenol A (BPA) has been banned as raw material for polymeric products, due to its harmful impact on human health. On the other hand, the use of aromatic amines as curing agents confers excellent thermal, mechanical and flame retardant properties to the final product, although they are toxic and subject to governmental restrictions. In this context, sugar-derived diepoxy monomers and anhydrides represent a sustainable greener alternative to BPA and aromatic amines. Herein, we report an "in-situ" sol-gel synthesis, using as precursors tetraethylorthosilicate (TEOS) and aminopropyl triethoxysilane (APTS) to obtain bio-based epoxy/silica composites; in a first step, the APTS was left to react with 2,5-bis[(oxyran-2-ylmethoxy)methyl]furan (BOMF) or diglycidyl ether of bisphenol A (DGEBA)monomers, and silica particles were generated in the epoxy in a second step; both systems were cured with methyl nadic anhydride (MNA). Morphological investigation of the composites through transmission electron microscopy (TEM) demonstrated that the hybrid strategy allows a very fine distribution of silica nanoparticles (at nanometric level) to be achieved within a hybrid network structure for both the diepoxy monomers. Concerning the fire behavior, as assessed in vertical flame spread tests, the use of anhydride curing agent prevented melt dripping phenomena and provided high char-forming character to the bio-based epoxy systems and their phenyl analog. In addition, forced combustion tests showed that the use of anhydride hardener instead of aliphatic polyamine results in a remarkable decrease of heat release rate. An overall decrease of the smoke parameters, which is highly desirable in a context of greater fire safety was observed in the case of BOMF/MNA system. The experimental results suggest that the effect of silica nanoparticles on fire behavior appears to be related to their dispersion degree.

13.
Polymers (Basel) ; 12(6)2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32575792

ABSTRACT

The development of new styrene-based hyper-crosslinked nanocomposites (HCLN) containing mesoporous silica nanoparticles (MSN) is reported here as a new strategy to obtain functional high surface area materials with an enhanced hydrophilic character. The HCLN composition, morphology and porous structure were analyzed using a multi-technique approach. The HCLN displayed a high surface area (above 1600 m2/g) and higher microporosity than the corresponding hyper-crosslinked neat resin. The enhanced adsorption properties of the HCLN towards polar organic dyes was demonstrated through the adsorption of a reactive dye, Remazol Brilliant Blue R (RB). In particular, the HCLN containing 5phr MSN showed the highest adsorption capacity of RB.

14.
J Colloid Interface Sci ; 568: 16-24, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32070851

ABSTRACT

HYPOTHESIS: Multi-component supramolecular hydrogels are gaining increasing interest as stimuli-responsive materials. To fully understand and possibly exploit the potential of such complex systems, the hierarchical structure of the gel network needs in-depth investigations across multiple length scales. We show that a thorough structural and rheological study represents a crucial pillar for the exploitation of this class of functional materials. EXPERIMENTS: Supramolecular hydrogels are prepared by self-assembly of hexadecyltrimethylammonium bromide (CTAB) and azobenzene-4,4'-dicarboxylic acid (AZO) in alkaline aqueous solution. The CTAB/AZO concentration was varied from ϕ = 0.25 to 4 wt% keeping the CTAB:AZO molar ratio fixed at 2:1. The systems were thoroughly studied through a combination of X-ray scattering, microscopy, rheological and spectroscopic analyses. FINDINGS: The CTAB/AZO solutions form a self-supporting gel with nanofibrillar structure below ~30 °C. The critical gelation concentration is ϕc = 0.45 wt%. Above this threshold, the gel elasticity and strength increase with CTAB/AZO content as ~(ϕ-ϕc)1. The hydrogels exhibit self-healing ability when left at rest after a stress-induced damage. Moreover, the light-induced isomerization of the AZO moieties provides the gel with light-responsiveness. Overall, the multi-stimuli responsiveness of the studied CTAB/AZO hydrogels makes them a solid starting point for the development of sensors for mechanical vibrations and UV/visible light exposure.

15.
Polymers (Basel) ; 11(10)2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31614717

ABSTRACT

We investigated the possibility of improving the performance of polysulfone (PSf) membranes to be used in carbon dioxide capture devices by blending PSf with a commercial polyethylene imine, Lupasol G20, previously modified with benzoyl chloride (mG20). Additive amount ranged between 2 and 20 wt %. Membranes based on these blends were prepared by phase inversion precipitation and exhibited different morphologies with respect to neat PSf. Surface roughness, water contact angles, and water uptake increased with mG20 content. Mass transfer coefficient was also increased for both N2 and CO2; however, this effect was more evident for carbon dioxide. Carbon dioxide absorption performance of composite membranes was evaluated for potassium hydroxide solution in a flat sheet membrane contactor (FSMC) in cross flow module at different liquid flow rates. We found that, at the lowest flow rate, membranes exhibit a very similar behaviour to neat PSf; nevertheless, significant differences can be found at higher flow rates. In particular, the membranes with 2 and 5 wt % additive behave more efficiently than neat PSf. In contrast, 10 and 20 wt % additive content has an adverse effect on CO2 capture when compared with neat PSf. In the former case, a combination of additive chemical affinity to CO2 and membrane porosity can be claimed; in the latter case, the remarkably higher wettability and water uptake could determine membrane clogging and consequent loss of efficiency in the capture device.

16.
Nanomaterials (Basel) ; 9(10)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627397

ABSTRACT

PtRu/MoS2 nanoparticles (NPs) (PtRu alloy partially coated by one-layer MoS2 nanosheets) were prepared through a 'wet chemistry' approach. The obtained NPs were directly embedded, at 5 parts per hundred resin/rubber (phr) loading, in a poly (divinylbenzene-co-vinyl benzyl chloride) hyper-crosslinked (HCL) resin, synthesized via bulk polymerization of the resin precursors, followed by conventional FeCl3 post-crosslinking. The obtained HCL nanocomposites were characterized to evaluate the effect of the NPs. It shows a high degree of crosslinking, a good dispersion of NPs and a surface area up to 1870 ± 20 m2/g. The catalytic activity of the HCL nanocomposite on phenol wet air oxidation was tested at low air pressure (Pair = 0.3 MPa) and temperature (T = 95 °C), and at different phenol concentrations. At the lower phenol concentration, the nanocomposite gives a total organic carbon (TOC) conversion of 97.1%, with a mineralization degree of 96.8%. At higher phenol concentrations, a phenol removal of 99.9%, after 420 min, was achieved, indicating a quasi-complete depletion of phenol, with a TOC conversion of 86.5%, corresponding to a mineralization degree of 84.2%. Catalyst fouling was evaluated, showing good reusability of the obtained nanocomposite.

17.
Biomacromolecules ; 20(10): 3831-3841, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31412201

ABSTRACT

The last two decades have witnessed a significant growth in using bioderived materials, driven by the necessity of replacing fossil-derived precursors, reducing the fossil fuel consumption, and lowering the global environmental impact. This is possible thanks to the availability of abundant resources from biomasses and the development of optimized technologies based on the principles of sustainability and circular economy. Herein, we report on the synthesis and characterization of new carbohydrate-derived epoxy resins. In particular, 2,5-bis[(oxiran-2-ylmethoxy)methyl]furan has been synthesized and cured with methyl nadic anhydride. The effect of different initiators was studied, in order to identify the most efficient curable formulations. A series of resins was then prepared varying the epoxide-anhydride ratios. The results gathered from physicochemical, mechanical, morphological analyses have demonstrated that the produced furan-based thermosets have the potential to be proposed as sustainable alternatives to the traditional, bisphenol A-containing epoxy resins.


Subject(s)
Anhydrides/chemistry , Epoxy Compounds/chemistry , Epoxy Resins/chemistry , Furans/chemistry , Benzhydryl Compounds/chemistry , Phenols/chemistry
18.
Polymers (Basel) ; 11(1)2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30960052

ABSTRACT

The development of antimicrobial active packaging constitutes a powerful tool to reduce waste and increase quality standards of perishable goods. Among numerous available antimicrobial agents, essential oils stand out for their renowned efficiency, and their use is beneficial due to their sustainability compared to other oil-based antimicrobials. In this work, we report on the use of photo-responsive nanocapsules containing thyme essential oil as functional coatings for polyethylene and polylactic acid films to obtain antimicrobial active packaging. Polymer surface activation treatment enhanced compatibility with nanocapsules solution. The films were analyzed to assess the structural and functional properties of the coating, evaluate morphological changes due to their photo-responsive behavior, and monitor the light-induced release of volatile thyme oil. It was found that 24 h after a 15-min UV exposure of the coated films, the concentration of thyme oil in the headspace was eight times higher with respect to un-irradiated films, thus confirming the efficiency of the light-triggered release system. Therefore, the manufactured films are proposed as on-demand release devices for application in non-contact antimicrobial active packaging.

19.
J Colloid Interface Sci ; 541: 367-375, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30708252

ABSTRACT

HYPOTHESIS: In the last years, several cost-effective technologies have been investigated to functionalize textile substrates for large scale applications and industrial production. However, several limitations of currently used technologies still restrict the capability to form functional coatings finely controlling the textile surface properties and topographic structure of the coatings at sub-micrometric scale. EXPERIMENTS: Herein, we introduced a new non-conventional electrofluidodynamic technology - based on the use of electrostatic forces to polymer/composite solutions - for the application onto textile fabrics of functional coatings. With respect to particle/fibrous coatings usually applied through conventional electrospraying/electrospinning processes, the proposed approach is able to realize homogeneous and continuous coatings by a one-step process, imparting tailored functionalities to the textiles surfaces through the use of customized experimental setups. FINDINGS: We proved that this process can be successfully used to realize functional coatings based on a bioderived polymer, namely polylactic acid (PLA), on commercial woven polyamide (PA) fabrics. In addition, due to the usage of graphene derivatives or photochromic dyes in combination with PLA, the applied coatings are able to confer peculiar functionalities (i.e., electrical conductivity, photochromic properties, etc.) to polyamide fabrics, as proved by SEM, conductivity and UV irradiation measurements, for innovative applications in smart textiles, e-health and wearable electronics.

20.
Carbohydr Polym ; 198: 175-180, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30092988

ABSTRACT

Washing processes of synthetic clothes have been identified as the main source of microplastic pollution in marine ecosystems. Textile microfibres have been found in marine sediments and organisms, posing a real threat for the environment. The development of mitigation approaches is strongly needed to prevent the impact of microplastics. In this work, an innovative finishing treatment of polyamide fabrics is proposed to mitigate the microplastic impact, by preventing the damage of fabrics during washings. The treatment is based on the use of pectin, a natural polysaccharide present in the cell walls of plants. To functionalize the fabric, pectin was firstly modified with glycidyl methacrylate (GMA) and then grafted on polyamide. Washing tests of treated fabrics showed the effectiveness of the treatment in reducing of about 90% the amount of microfibres released by untreated fabrics. Post-wash analysis of the treated fabrics revealed a promising resistance to the washing process.

SELECTION OF CITATIONS
SEARCH DETAIL
...