Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Egypt Natl Canc Inst ; 34(1): 51, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36504339

ABSTRACT

BACKGROUND: Mammosphere formation assay has become a versatile tool to quantify the activity of putative breast cancer stem cells in non-adherent in vitro cultures. However, optimizing the suspension culture system is crucial to establish mammosphere cultures from primary breast tumors. METHODS: This study aimed at determining the self-renewal and sphere-forming potential of breast cancer stem-like cells derived from human primary invasive ductal carcinoma and normal breast tissue samples, and MCF-7 breast cancer cell line using an optimal suspension culture system. Mammosphere-forming efficiency of the mammospheres generated from the tissue samples and cell line were compared. We evaluated the expression of CD44+/CD24-/low and CD49f+/EpCAM-/low phenotypes in the stem-like cells by flow cytometry. CK-18, CK-19, α-SMA, and EpCAM marker expression was assessed using immunohistochemical staining. RESULTS: Breast epithelial cells isolated from the three samples formed two-dimensional spheroids in suspension cultures. Interestingly, mammospheres formed from patient-derived primary breast tumors were enriched in breast cancer stem-like cells with the phenotype CD44+/CD24-/low and exhibited a relatively more number of large spheres when compared to the normal breast stem cells. MCF-7-derived SCs were more aggressive and resulted in the formation of a significantly higher number of spheroids. The expression of CK-18/CK-19 and α-SMA/EpCAM proteins was confirmed in breast cancer tissues. CONCLUSIONS: Thus, the use of primary tumor specimens and breast cancer cell lines as suitable models for elucidating the breast cancer stem cell activity was validated using mammosphere culture system.


Subject(s)
Breast Neoplasms , Breast , Humans , Female , MCF-7 Cells , Neoplastic Stem Cells
2.
J Infect Public Health ; 15(11): 1180-1191, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36240528

ABSTRACT

The high incidences of COVID-19 cases are believed to be associated with high transmissibility rates, which emphasizes the need for the discovery of evidence-based antiviral therapies for curing the disease. The rationale of repurposing existing classes of antiviral small molecule therapeutics against SARS-CoV-2 infection has been expected to accelerate the tedious and expensive drug development process. While Remdesivir has been recently approved to be the first treatment option for specific groups of COVID-19 patients, combinatory therapy with potential antiviral drugs may be necessary to enhance the efficacy in different populations. Hence, a comprehensive list of investigational antimicrobial drug compounds such as Favipiravir, Fidaxomicin, Galidesivir, GC376, Ribavirin, Rifabutin, and Umifenovir were computationally evaluated in this study. We performed in silico docking and molecular dynamics simulation on the selected small molecules against RNA-dependent RNA polymerase, which is one of the key target proteins of SARS-CoV-2, using AutoDock and GROMACS. Interestingly, our results revealed that the macrocyclic antibiotic, Fidaxomicin, possesses the highest binding affinity with the lowest energy value of -8.97 kcal/mol binding to the same active sites of RdRp. GC376, Rifabutin, Umifenovir and Remdesivir were identified as the next best compounds. Therefore, the above-mentioned compounds could be considered good leads for further preclinical and clinical experimentations as potentially efficient antiviral inhibitors for combination therapies against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA-Dependent RNA Polymerase , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Fidaxomicin , Drug Repositioning , Molecular Docking Simulation , Rifabutin
3.
Biomed Res Int ; 2022: 2044577, 2022.
Article in English | MEDLINE | ID: mdl-36046457

ABSTRACT

Zika virus is a member of the Flaviviridae family and genus Flavivirus, which has a phylogenetic relationship with spondweni virus. It spreads to humans through a mosquito bite. To identify potential inhibitors for the Zika virus with biosafety, we selected natural antiviral compounds isolated from plant sources and screened against NS3 helicase of the Zika virus. The enzymatic activity of the NS3 helicase is associated with the C-terminal region and is concerned with RNA synthesis and genome replication. It serves as a crucial target for the Zika virus. We carried out molecular docking for the target NS3 helicase against the selected 25 phytochemicals using AutoDock Vina software. Among the 25 plant compounds, we identified NS3 helicase-ellagic acid (-9.9 kcal/mol), NS3 helicase-hypericin (-9.8 kcal/mol), and NS3 helicase-pentagalloylglucose (-9.5 kcal/mol) as the best binding affinity compounds based on their binding energies. To understand the stability of these complexes, molecular dynamic simulations were executed and the trajectory analysis exposed that the NS3 helicase-ellagic acid complex possesses greater stability than the other two complexes such as NS3 helicase-hypericin and NS3 helicase-pentagalloylglucose. The ADMET property prediction of these compounds resulted in nontoxicity and noncarcinogenicity.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , DNA Helicases/genetics , Ellagic Acid , Humans , Molecular Docking Simulation , Phylogeny , RNA Helicases/genetics , Serine Endopeptidases/genetics , Viral Nonstructural Proteins/chemistry , Virus Replication , Zika Virus/chemistry
4.
Comput Biol Chem ; 98: 107673, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35460944

ABSTRACT

The knowledge of what separates us genetically from our less-evolved relatives is crucial for gaining new biomedical insight about the human-chimpanzee relatedness that could influence the development of new treatments and diagnostic aids for various ailments. Especially, more than 300 diseases have been mapped to the X chromosome, which has unique and complicated characteristics than other chromosomes in the human genome. Although the genomes of humans and chimpanzees share 99% similarity, significant differences exist between the two species in their non-coding intronic regions. Therefore, this evolutionary-based genome annotation study attempted to computationally compare, contrast, and annotate the homologous miRNAs and their gene regulatory mechanisms in the intronic regions of the PHEX gene on the human X chromosome of the two species. From our results, we identified a total of 1296 human miRNAs and 46, 957 gene targets. Similarly, 30, 563 targets of homologous chimp miRNAs were predicted. miRNAs like hsa-miR-17-5p showed a maximum number of interactions while miRNAs like hsa-miR-107 with the least number of interactions in the human/chimp gene networks. A few top-ranked miRNAs such as hsa-miR-24, hsa-miR-145, hsa-miR-34a, and hsa-miR-378 were observed to be common between the two genera. The cooperativity and multiplicity of certain miRNAs were predicted to regulate the expression of diverse cancer-associated genes such as Cyclin D1, Notch1, CDK-6, E2F3, ALK4, CKDN2A, DHFR, and MAPK14. Nevertheless, further in vitro and in vivo experimental validations of these gene candidates are required before they could be used as potential diagnostic markers and drug targets.


Subject(s)
MicroRNAs , Pan troglodytes , Animals , Computational Biology/methods , Gene Expression Profiling , Gene Regulatory Networks , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Pan troglodytes/genetics , Pan troglodytes/metabolism
5.
Molecules ; 27(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335139

ABSTRACT

The wild-type SARS-CoV-2 has continuously evolved into several variants with increased transmissibility and virulence. The Delta variant which was initially identified in India created a devastating impact throughout the country during the second wave. While the efficacy of the existing vaccines against the latest SARS-CoV-2 variants remains unclear, extensive research is being carried out to develop potential antiviral drugs through approaches like in silico screening and drug-repurposing. This study aimed to conduct the docking-based virtual screening of 50 potential phytochemical compounds against a Spike glycoprotein of the wild-type and the Delta SARS-CoV-2 variant. Subsequently, molecular docking was performed for the five best compounds, such as Lupeol, Betulin, Hypericin, Corilagin, and Geraniin, along with synthetic controls. From the results obtained, it was evident that Lupeol exhibited a remarkable binding affinity towards the wild-type Spike protein (-8.54 kcal/mol), while Betulin showed significant binding interactions with the mutated Spike protein (-8.83 kcal/mol), respectively. The binding energy values of the selected plant compounds were slightly higher than that of the controls. Key hydrogen bonding and hydrophobic interactions of the resulting complexes were visualized, which explained their greater binding affinity against the target proteins-the Delta S protein of SARS-CoV-2, in particular. The lower RMSD, the RMSF values of the complexes and the ligands, Rg, H-bonds, and the binding free energies of the complexes together revealed the stability of the complexes and significant binding affinities of the ligands towards the target proteins. Our study suggests that Lupeol and Betulin could be considered as potential ligands for SARS-CoV-2 spike antagonists. Further experimental validations might provide new insights for the possible antiviral therapeutic interventions of the identified lead compounds and their analogs against COVID-19 infection.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
6.
Article in English | MEDLINE | ID: mdl-34938343

ABSTRACT

Emergence of antibiotic-resistant Mycobacterium tuberculosis (M. tuberculosis) restricts the availability of drugs for the treatment of tuberculosis, which leads to the increased morbidity and mortality of the disease worldwide. There are many intrinsic and extrinsic factors that have been reported for the resistance mechanism. To overcome such mechanisms, chemically synthesized benzaldehyde thiosemicarbazone derivatives were screened against M. tuberculosis to find potential inhibitor for tuberculosis. Such filtering process resulted in compound 13, compound 21, and compound 20 as the best binding energy compounds against DNA gyrase B, an important protein in the replication process. The ADMET prediction has shown the oral bioavailability of the novel compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...