Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732126

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a critical public health concern due to its role in severe gastrointestinal illnesses in humans, including hemorrhagic colitis and the life-threatening hemolytic uremic syndrome. While highly pathogenic to humans, cattle, the main reservoir for EHEC, often remain asymptomatic carriers, complicating efforts to control its spread. Our study introduces a novel method to investigate EHEC using organoid-derived monolayers from adult bovine ileum and rectum. These polarized epithelial monolayers were exposed to EHEC for four hours, allowing us to perform comparative analyses between the ileal and rectal tissues. Our findings mirrored in vivo observations, showing a higher colonization rate in the rectum compared with the ileum (44.0% vs. 16.5%, p < 0.05). Both tissues exhibited an inflammatory response with increased expression levels of TNF-a (p < 0.05) and a more pronounced increase of IL-8 in the rectum (p < 0.01). Additionally, the impact of EHEC on the mucus barrier varied across these gastrointestinal regions. Innovative visualization techniques helped us study the ultrastructure of mucus, revealing a net-like mucin glycoprotein organization. While further cellular differentiation could enhance model accuracy, our research significantly deepens understanding of EHEC pathogenesis in cattle and informs strategies for the preventative measures and therapeutic interventions.


Subject(s)
Enterohemorrhagic Escherichia coli , Ileum , Organoids , Rectum , Animals , Cattle , Ileum/microbiology , Ileum/metabolism , Ileum/ultrastructure , Rectum/microbiology , Enterohemorrhagic Escherichia coli/pathogenicity , Organoids/metabolism , Organoids/microbiology , Mucus/metabolism , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/ultrastructure
2.
Sci Rep ; 14(1): 11479, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769412

ABSTRACT

Salmonella enterica serovar Dublin (S. Dublin) is an important enteric pathogen affecting cattle and poses increasing public health risks. Understanding the pathophysiology and host-pathogen interactions of S. Dublin infection are critical for developing effective control strategies, yet studies are hindered by the lack of physiologically relevant in vitro models. This study aimed to generate a robust ileal monolayer derived from adult bovine organoids, validate its feasibility as an in vitro infection model with S. Dublin, and evaluate the epithelial response to infection. A stable, confluent monolayer with a functional epithelial barrier was established under optimized culture conditions. The model's applicability for studying S. Dublin infection was confirmed by documenting intracellular bacterial invasion and replication, impacts on epithelial integrity, and a specific inflammatory response, providing insights into the pathogen-epithelium interactions. The study underscores the utility of organoid-derived monolayers in advancing our understanding of enteric infections in livestock and highlights implications for therapeutic strategy development and preventive measures, with potential applications extending to both veterinary and human medicine. The established bovine ileal monolayer offers a novel and physiologically relevant in vitro platform for investigating enteric pathogen-host interactions, particularly for pathogens like S. Dublin.


Subject(s)
Host-Pathogen Interactions , Ileum , Organoids , Salmonella Infections, Animal , Animals , Cattle , Organoids/microbiology , Ileum/microbiology , Ileum/pathology , Salmonella Infections, Animal/microbiology , Salmonella enterica/pathogenicity , Salmonella enterica/physiology , Inflammation/microbiology , Inflammation/pathology , Intestinal Mucosa/microbiology , Cattle Diseases/microbiology
3.
BMC Mol Cell Biol ; 25(1): 14, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689222

ABSTRACT

BACKGROUND: Emerging evidence underscores the responsiveness of the mammalian intestine to dietary cues, notably through the involvement of LGR5 + intestinal stem cells in orchestrating responses to diet-driven signals. However, the effects of high-fat diet (HFD) on these cellular dynamics and their impact on gut integrity remain insufficiently understood. Our study aims to assess the multifaceted interactions between palmitic acid (PA), cell proliferation, and the intestinal epithelial barrier using a canine colonoid model. Canine models, due to their relevance in simulating human intestinal diseases, offer a unique platform to explore the molecular mechanisms underlying HFD derived intestinal dysfunction. RESULTS: Canine colonoids were subjected to PA exposure, a surrogate for the effects of HFD. This intervention revealed a remarkable augmentation of cell proliferative activity. Furthermore, we observed a parallel reduction in transepithelial electrical resistance (TEER), indicating altered epithelium barrier integrity. While E-cadherin exhibited consistency, ZO-1 displayed a noteworthy reduction in fluorescence intensity within the PA-exposed group. CONCLUSIONS: By employing canine intestinal organoid systems, we provide compelling insights into the impact of PA on intestinal physiology. These findings underscore the importance of considering both cell proliferative activity and epithelial integrity in comprehending the repercussions of HFDs on intestinal health. Our study contributes to a deeper understanding of the consequences of HFD on intestinal homeostasis, utilizing valuable translational in vitro models derived from dogs.


Subject(s)
Cell Proliferation , Diet, High-Fat , Intestinal Mucosa , Organoids , Palmitic Acid , Permeability , Animals , Dogs , Diet, High-Fat/adverse effects , Organoids/metabolism , Organoids/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Intestines/cytology , Intestines/physiology , Intestinal Barrier Function
4.
PLoS One ; 19(3): e0301079, 2024.
Article in English | MEDLINE | ID: mdl-38512940

ABSTRACT

Developing precise species-specific in vitro models that closely resemble in vivo intestinal tissues is essential for advancing our understanding of gastrointestinal physiology and associated diseases. This is especially crucial in examining host-pathogen interactions, particularly in bovines, a known reservoir for microbes and pathogens posing substantial public health threats. This research investigated the viability of producing bovine rectal organoids from cryopreserved tissues. We compared two cryopreservation methods with a traditional technique using fresh tissues, evaluating their effectiveness through growth rates, long-term viability, and comprehensive structural, cellular, and genetic analyses. These assessments utilized phase-contrast imaging, immunofluorescence imaging, and RT-qPCR assays. Additionally, the study developed a sophisticated method for forming a functional epithelial barrier from organoid-derived bovine rectal monolayers, incorporating a wide range of epithelial cells. This methodology employed transepithelial electrical resistance (TEER), parallel artificial membrane permeability assay (Papp), confocal microscopy, and advanced imaging techniques like scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Our findings decisively show that bovine rectal organoids can be effectively generated from cryopreserved biopsy tissues. Moreover, we formulated a robust and optimized protocol for creating functional rectal monolayers from these organoids. This significant progress is particularly relevant given the susceptibility of the bovine rectum to various enteric pathogens of public health concern, marking a vital step forward in veterinary and biomedical research. The creation of accurate species specific in vitro models that faithfully mimic in vivo intestinal tissues is critical for enhancing our understanding of gut physiology and related pathologies. This is particularly relevant in studying the interactions between hosts and microbes or pathogens with significant public health risks where bovine can be the major reservoir.


Subject(s)
Cryopreservation , Rectum , Animals , Cattle , Epithelial Cells , Biopsy , Organoids/physiology , Intestinal Mucosa
5.
Xenobiotica ; : 1-9, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38441495

ABSTRACT

Understanding cytochrome P450 (CYP) enzymes in the canine intestine is vital for predicting drug metabolism and developing safer oral medications. This study evaluates canine colonoids as a model to assess the expression and induction of essential intestinal CYP enzymes.Canine colonoids were cultured in expansion medium (EM) with Wnt-3A and in differentiation medium (DM) without Wnt-3A. We assessed the mRNA expression of CYP2B11, CYP2C21, CYP3A12, and CYP3A98 using qPCR and examined the effects of rifampicin and phenobarbital as inducers.Our findings show that DM significantly increased the mRNA expression of CYP3A98 and CYP2B11, but not CYP3A12, compared to EM. CYP2C21, not typically expressed in the intestine, remained unexpressed in colonoids. Rifampicin induced CYP3A98, aligning with pregnane x receptor (PXR) regulation, while phenobarbital did not, suggesting no constitutive androstane receptor (CAR) involvement. CYP2B11 did not respond to either inducer, suggesting alternative regulatory pathways in canine colonoids.This study is a pioneering effort to establish conditions for studying P450 expression in canine colonoids, confirming significant CYP3A98 expression in the canine intestine. It demonstrated colonoids can induce CYP activity post drug treatments. Further research is needed to enhance species-specific drug metabolism understanding and validate this model for broader applications.

6.
J Vis Exp ; (204)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38407238

ABSTRACT

Canine intestines possess similarities in anatomy, microbiology, and physiology to those of humans, and dogs naturally develop spontaneous intestinal disorders similar to humans. Overcoming the inherent limitation of three-dimensional (3D) organoids in accessing the apical surface of the intestinal epithelium has led to the generation of two-dimensional (2D) monolayer cultures, which expose the accessible luminal surface using cells derived from the organoids. The integration of these organoids and organoid-derived monolayer cultures into a microfluidic Gut-on-a-Chip system has further evolved the technology, allowing for the development of more physiologically relevant dynamic in vitro intestinal models. In this study, we present a protocol for generating 3D morphogenesis of canine intestinal epithelium using primary intestinal tissue samples obtained from dogs affected by inflammatory bowel disease (IBD). We also outline a protocol for generating and maintaining 2D monolayer cultures and intestine-on-a-chip systems using cells derived from the 3D intestinal organoids. The protocols presented in this study serve as a foundational framework for establishing a microfluidic Gut-on-a-Chip system specifically designed for canines. By laying the groundwork for this innovative approach, we aim to expand the application of these techniques in biomedical and translational research, aligning with the principles of the One Health Initiative. By utilizing this approach, we can develop more physiologically relevant dynamic in vitro models for studying intestinal physiology in both dogs and humans. This has significant implications for biomedical and pharmaceutical applications, as it can aid in the development of more effective treatments for intestinal diseases in both species.


Subject(s)
Inflammatory Bowel Diseases , Organoids , Humans , Dogs , Animals , Intestinal Mucosa , Morphogenesis , Lab-On-A-Chip Devices
7.
Front Vet Sci ; 10: 1185621, 2023.
Article in English | MEDLINE | ID: mdl-37470070

ABSTRACT

A 1-year-old male intact Miniature Schnauzer mix was presented for chronic intermittent hematuria. Abdominal ultrasonography revealed a large, fluid-filled cystic structure extending cranially and dorsally to the prostate. Computed tomography scan images revealed that the fluid-filled cavity resembled a uterus, with both horns entering the scrotum through the inguinal canal adjacent to the testes. On cytogenetic analysis, the dog was found to have a homozygote mutation on AMHRII consistent with persistent Müllerian duct syndrome (PMDS). A gonadohysterectomy was performed, and surgical and histologic findings confirmed the presence of a uterus, oviducts, vagina, and testes in this dog. Additionally, an intraoperative fluoroscopy exam revealed a communication between the uterus and the bladder via an enlarged utricle, explaining the hematuria and urine in the reproductive tract (urometra). To our knowledge, this is the first clinical report of a phenotypically intact male dog with PMDS and urometra due to an enlarged prostatic utricle. This case illustrates a combination of a disorder of sex and urogenital sinus development.

8.
Front Vet Sci ; 10: 1179836, 2023.
Article in English | MEDLINE | ID: mdl-37303723

ABSTRACT

The study of biliary physiology and pathophysiology has long been hindered by the lack of in vitro models that accurately reflect the complex functions of the biliary system. Recent advancements in 3D organoid technology may offer a promising solution to this issue. Bovine gallbladder models have recently gained attention in the investigation of human diseases due to their remarkable similarities in physiology and pathophysiology with the human gallbladder. In this study, we have successfully established and characterized bovine gallbladder cholangiocyte organoids (GCOs) that retain key characteristics of the gallbladder in vivo, including stem cell properties and proliferative capacity. Notably, our findings demonstrate that these organoids exhibit specific and functional CFTR activity. We believe that these bovine GCOs represent a valuable tool for studying the physiology and pathophysiology of the gallbladder with human significance.

9.
Sci Rep ; 12(1): 22641, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36587177

ABSTRACT

Here, we report a pathomimetic Leaky Gut Chip that recapitulates increased epithelial permeability and intestinal inflammation to assess probiotic intervention as live biotherapeutics. We leveraged a mechanodynamic human gut-on-a-chip (Gut Chip) that recreates three-dimensional epithelial layers in a controlled oxygen gradient and biomechanical cues, where the addition of a cocktail of pro-inflammatory cytokines, TNF-α and IL-1ß, reproducibly induced impaired epithelial barrier followed by intestinal inflammation. This inflamed leaky epithelium was not recovered for up to 3 days, although the cytokine treatment ceased. However, when probiotic bacteria, either Lactobacillus rhamnosus GG or a multi-species mixture (VSL#3), were respectively administered on the leaky epithelium, bacterial cells colonized mucosal surface and significantly improved barrier function, enhanced the localization of tight junction proteins such as ZO-1 and occludin, and elevated mucus production. In addition, inflammatory markers, including p65, pSTAT3, and MYD88, that were highly expressed in the germ-free control were significantly reduced when probiotic bacteria were co-cultured in a Leaky Gut Chip. Probiotic treatment also significantly reduced the production of secretory pro-inflammatory cytokines. Hence, our pathomimetic Leaky Gut Chip may offer a translational strategy to dissect the therapeutic mechanism of live biotherapeutic products and validate their clinical potential by incorporating patient-derived organoids.


Subject(s)
Cytokines , Probiotics , Humans , Cytokines/metabolism , Epithelium , Bacteria , Intestinal Mucosa/metabolism , Probiotics/pharmacology , Inflammation/metabolism
10.
Front Med Technol ; 4: 895379, 2022.
Article in English | MEDLINE | ID: mdl-35647577

ABSTRACT

Animal organoid models derived from farm and companion animals have great potential to contribute to human health as a One Health initiative, which recognize a close inter-relationship among humans, animals and their shared environment and adopt multi-and trans-disciplinary approaches to optimize health outcomes. With recent advances in organoid technology, studies on farm and companion animal organoids have gained more attention in various fields including veterinary medicine, translational medicine and biomedical research. Not only is this because three-dimensional organoids possess unique characteristics from traditional two-dimensional cell cultures including their self-organizing and self-renewing properties and high structural and functional similarities to the originating tissue, but also because relative to conventional genetically modified or artificially induced murine models, companion animal organoids can provide an excellent model for spontaneously occurring diseases which resemble human diseases. These features of companion animal organoids offer a paradigm-shifting approach in biomedical research and improve translatability of in vitro studies to subsequent in vivo studies with spontaneously diseased animals while reducing the use of conventional animal models prior to human clinical trials. Farm animal organoids also could play an important role in investigations of the pathophysiology of zoonotic and reproductive diseases by contributing to public health and improving agricultural production. Here, we discuss a brief history of organoids and the most recent updates on farm and companion animal organoids, followed by discussion on their potential in public health, food security, and comparative medicine as One Health initiatives. We highlight recent evolution in the culturing of organoids and their integration with organ-on-a-chip systems to overcome current limitations in in vitro studies. We envision multidisciplinary work integrating organoid culture and organ-on-a-chip technology can contribute to improving both human and animal health.

11.
J Vet Intern Med ; 36(3): 966-975, 2022 May.
Article in English | MEDLINE | ID: mdl-35420222

ABSTRACT

BACKGROUND: Serum concentrations of 25-hydroxyvitamin D (25(OH)VD) and C-reactive protein (CRP) and von Willebrand's factor (vWF) concentration correlate with histopathologic disease grade and stage in chronic inflammatory and fibrotic hepatopathies (CH) in humans. OBJECTIVES: To evaluate serum 25(OH)VD and serum CRP concentrations and plasma vWF concentration and determine if they correlate with histopathologic and biochemical variables in dog with CH. ANIMALS: Twenty-three client-owned dogs with a histopathologic diagnosis of CH were prospectively enrolled. METHODS: Blood samples were collected before liver biopsy. Correlations between biomarkers and clinical pathological and histopathologic variables were evaluated using Pearson's or Spearman's test. RESULTS: Serum 25(OH)VD concentration (median, 213 nmol/L; range, 42-527 nmol/L) was negatively correlated with serum aspartate aminotransferase activity (AST; rho = -0.59, P < .01), polymorphonuclear neutrophil count (PMN; r = -0.46, P < .05), and positively correlated with serum albumin concentration (r = 0.69, P < .001). Serum CRP concentration (median, 7.4 µg/L; range, 1-44.9 µg/L) was positively correlated with overall histopathologic necroinflammatory activity (r = 0.78, P < .001) and fibrosis score (rho = 0.49, P < .05). Plasma vWF concentration (median, 73.3%; range, 15-141%) was positively correlated with fibrosis score (r = 0.53, P < .05) and prothrombin time (rho = 0.67, P < .01), and negatively correlated with serum albumin concentration (r = -0.73, P < .001). CONCLUSION AND CLINICAL IMPORTANCE: In dogs with CH, serum 25(OH)VD concentration was negatively correlated with disease activity, whereas serum CRP concentration and plasma vWF concentration were positively correlated with histopathologic grade and stage. Our results provide preliminary evidence that these biomarkers may be useful to assess grade and stage of CH in dogs in the absence of liver biopsy.


Subject(s)
Dog Diseases , Liver Diseases , Animals , Biomarkers , C-Reactive Protein/analysis , Dogs , Fibrosis , Liver Diseases/veterinary , Serum Albumin , Vitamin D/analogs & derivatives , von Willebrand Factor
12.
Front Vet Sci ; 7: 451, 2020.
Article in English | MEDLINE | ID: mdl-32851029

ABSTRACT

Canine inflammatory bowel disease (IBD) is a chronic, immunologically mediated intestinal disorder, resulting from the complex interaction of genetic, environmental and immune factors. Hydrolyzed diets are used in dogs with food-responsive diarrhea (FRD) to reduce adverse responses to immunostimulatory proteins. Prebiotics (PRBs) and glycosaminoglycans (GAGs) have previously been demonstrated to show anti-inflammatory activity in the intestinal mucosa. Notably, hydrolyzed diets combined with the administration of PRBs and GAGs offer a promising approach for the treatment of canine IBD. Our aim was to investigate the effects of hydrolyzed diet and GAG+PRB co-treatment on the serum metabolomic profile of IBD dogs. Dogs with IBD randomly received either hydrolyzed diet supplemented with GAGs and PRBs (treatment 1) or hydrolyzed diet alone (treatment 2) for 10 weeks. A targeted metabolomics approach using mass spectrometry was performed to quantify changes in the serum metabolome before and after treatment and between treatment 1 and 2. Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), hierarchical cluster analysis (HCA) and univariate statistics were used to identify differences between the treatment groups. PCA, PLS-DA, and HCA showed a clear clustering of IBD dogs before and after hydrolyzed diet, indicating that the treatment impacted the serum metabolome. Univariate analysis revealed that most of the altered metabolites were involved in lipid metabolism. The most impacted lipid classes were components of cell membranes, including glycerophospholipids, sphingolipids, and di- and triglycerides. In addition, changes in serum metabolites after GAG+PRB co-treatment suggested a possible additional beneficial effect on the lipid metabolism in IBD dogs. In conclusion, the present study showed a significant increase in metabolites that protect gut cell membrane integrity in response to hydrolyzed diet alone or in combination with GAG+PRB co-treatment. Administration of such treatment over 70 days improved selected serum biomarkers of canine IBD, possibly indicating improved intestinal membrane integrity.

13.
Micromachines (Basel) ; 11(7)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645991

ABSTRACT

The regeneration of the mucosal interface of the human intestine is critical in the host-gut microbiome crosstalk associated with gastrointestinal diseases. The biopsy-derived intestinal organoids provide genetic information of patients with physiological cytodifferentiation. However, the enclosed lumen and static culture condition substantially limit the utility of patient-derived organoids for microbiome-associated disease modeling. Here, we report a patient-specific three-dimensional (3D) physiodynamic mucosal interface-on-a-chip (PMI Chip) that provides a microphysiological intestinal milieu under defined biomechanics. The real-time imaging and computational simulation of the PMI Chip verified the recapitulation of non-linear luminal and microvascular flow that simulates the hydrodynamics in a living human gut. The multiaxial deformations in a convoluted microchannel not only induced dynamic cell strains but also enhanced particle mixing in the lumen microchannel. Under this physiodynamic condition, an organoid-derived epithelium obtained from the patients diagnosed with Crohn's disease, ulcerative colitis, or colorectal cancer independently formed 3D epithelial layers with disease-specific differentiations. Moreover, co-culture with the human fecal microbiome in an anoxic-oxic interface resulted in the formation of stochastic microcolonies without a loss of epithelial barrier function. We envision that the patient-specific PMI Chip that conveys genetic, epigenetic, and environmental factors of individual patients will potentially demonstrate the pathophysiological dynamics and complex host-microbiome crosstalk to target a patient-specific disease modeling.

14.
Immune Netw ; 20(2): e13, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32395365

ABSTRACT

The epithelial barrier in the gastrointestinal (GI) tract is a protective interface that endures constant exposure to the external environment while maintaining its close contact with the local immune system. Growing evidence has suggested that the intercellular crosstalk in the GI tract contributes to maintaining the homeostasis in coordination with the intestinal microbiome as well as the tissue-specific local immune elements. Thus, it is critical to map the complex crosstalks in the intestinal epithelial-microbiome-immune (EMI) axis to identify a pathological trigger in the development of intestinal inflammation, including inflammatory bowel disease. However, deciphering a specific contributor to the onset of pathophysiological cascades has been considerably hindered by the challenges in current in vivo and in vitro models. Here, we introduce various microphysiological engineering models of human immune responses in the EMI axis under the healthy conditions and gut inflammation. As a prospective model, we highlight how the human "gut inflammation-on-a-chip" can reconstitute the pathophysiological immune responses and contribute to understanding the independent role of inflammatory factors in the EMI axis on the initiation of immune responses under barrier dysfunction. We envision that the microengineered immune models can be useful to build a customizable patient's chip for the advance in precision medicine.

15.
PLoS One ; 15(4): e0231423, 2020.
Article in English | MEDLINE | ID: mdl-32302323

ABSTRACT

Recent advances in canine intestinal organoids have expanded the option for building a better in vitro model to investigate translational science of intestinal physiology and pathology between humans and animals. However, the three-dimensional geometry and the enclosed lumen of canine intestinal organoids considerably hinder the access to the apical side of epithelium for investigating the nutrient and drug absorption, host-microbiome crosstalk, and pharmaceutical toxicity testing. Thus, the creation of a polarized epithelial interface accessible from apical or basolateral side is critical. Here, we demonstrated the generation of an intestinal epithelial monolayer using canine biopsy-derived colonic organoids (colonoids). We optimized the culture condition to form an intact monolayer of the canine colonic epithelium on a nanoporous membrane insert using the canine colonoids over 14 days. Transmission and scanning electron microscopy revealed a physiological brush border interface covered by the microvilli with glycocalyx, as well as the presence of mucin granules, tight junctions, and desmosomes. The population of stem cells as well as differentiated lineage-dependent epithelial cells were verified by immunofluorescence staining and RNA in situ hybridization. The polarized expression of P-glycoprotein efflux pump was confirmed at the apical membrane. Also, the epithelial monolayer formed tight- and adherence-junctional barrier within 4 days, where the transepithelial electrical resistance and apparent permeability were inversely correlated. Hence, we verified the stable creation, maintenance, differentiation, and physiological function of a canine intestinal epithelial barrier, which can be useful for pharmaceutical and biomedical researches.


Subject(s)
Colon/cytology , Epithelial Cells/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Cell Differentiation , Cell Lineage , Cells, Cultured , Desmosomes/metabolism , Dogs , Epithelial Cells/cytology , Epithelial Cells/ultrastructure , Membranes, Artificial , Microvilli/physiology , Mucins/metabolism , Nanopores , Stem Cells/cytology , Stem Cells/metabolism , Tight Junctions/metabolism
16.
Front Med Technol ; 22020 Aug.
Article in English | MEDLINE | ID: mdl-33532747

ABSTRACT

Polydimethylsiloxane (PDMS) is a silicone polymer that has been predominantly used in a human organ-on-a-chip microphysiological system. The hydrophobic surface of a microfluidic channel made of PDMS often results in poor adhesion of the extracellular matrix (ECM) as well as cell attachment. The surface modification by plasma or UV/ozone treatment in a PDMS-based device produces a hydrophilic surface that allows robust ECM coating and the reproducible attachment of human intestinal immortalized cell lines. However, these surface-activating methods have not been successful in forming a monolayer of the biopsy-derived primary organoid epithelium. Several existing protocols to grow human intestinal organoid cells in a PDMS microchannel are not always reproducibly operative due to the limited information. Here, we report an optimized methodology that enables robust and reproducible attachment of the intestinal organoid epithelium in a PDMS-based gut-on-a-chip. Among several reported protocols, we optimized a method by performing polyethyleneimine-based surface functionalization followed by the glutaraldehyde cross linking to activate the PDMS surface. Moreover, we discovered that the post-functionalization step contributes to provide uniform ECM deposition that allows to produce a robust attachment of the dissociated intestinal organoid epithelium in a PDMS-based microdevice. We envision that our optimized protocol may disseminate an enabling methodology to advance the integration of human organotypic cultures in a human organ-on-a-chip for patient-specific disease modeling.

17.
J Vet Intern Med ; 33(5): 2046-2056, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31393054

ABSTRACT

BACKGROUND: The etiology of idiopathic chronic hepatitis (ICH) in dogs is poorly understood, but evidence supports an immune-mediated pathogenesis in some dogs. OBJECTIVES: To describe a case series of dogs with presumed ICH treated with cyclosporine (CsA) with or without concurrent medications and to document the incidence of biochemical remission and factors associated with failure to attain remission. ANIMALS: Forty-eight client-owned dogs diagnosed with presumed ICH, treatment of which included CsA. METHODS: Two-institution, retrospective case series of dogs between 2010 and 2017. All dogs were treated with CsA with or without concurrent medications for ≥2 weeks. Data were collected from medical records. RESULTS: Biochemical remission (<1.1 times the upper limit of normal for alanine aminotransferase activity) was attained in 79% of dogs (38/48). Median dose of CsA at remission was 7.9 mg/kg/d (range, 2.5-12.7 mg/kg/d) and median time to remission was 2.5 months (range, 0.75-18 months). Concurrent hepatoprotectant treatment was not associated with likelihood of remission. Clinical score, ascites, hypoalbuminemia, hyperbilirubinemia, prolonged coagulation times, dose, and duration of treatment were not associated with the probability of remission or time to remission. Common adverse effects of CsA were gastrointestinal signs in 38% (18/48) and gingival hyperplasia in 25% (12/48) of treated dogs. CONCLUSION AND CLINICAL IMPORTANCE: A treatment regimen including CsA and frequent hepatoprotectant use resulted in biochemical remission of ICH in most dogs. None of the evaluated factors, including hepatoprotectant use, were significantly associated with likelihood of remission. Future prospective studies are indicated to evaluate CsA monotherapy in ICH dogs.


Subject(s)
Cyclosporine/therapeutic use , Dog Diseases/drug therapy , Hepatitis, Chronic/veterinary , Immunosuppressive Agents/therapeutic use , Alanine Transaminase/blood , Animals , Cyclosporine/administration & dosage , Cyclosporine/adverse effects , Dog Diseases/pathology , Dogs , Female , Hepatitis, Chronic/drug therapy , Hepatitis, Chronic/pathology , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/adverse effects , Male , Protective Agents/administration & dosage , Protective Agents/adverse effects , Protective Agents/therapeutic use , Remission Induction , Retrospective Studies
18.
Front Aging Neurosci ; 11: 130, 2019.
Article in English | MEDLINE | ID: mdl-31275138

ABSTRACT

Identifying appropriate animal models is critical in developing translatable in vitro and in vivo systems for therapeutic drug development and investigating disease pathophysiology. These animal models should have direct biological and translational relevance to the underlying disease they are supposed to mimic. Aging dogs not only naturally develop a cognitive decline in many aspects including learning and memory deficits, but they also exhibit human-like individual variability in the aging process. Neurodegenerative processes that can be observed in both human and canine brains include the progressive accumulation of ß-amyloid (Aß) found as diffuse plaques in the prefrontal cortex (PFC), including the gyrus proreus (i.e., medial orbital PFC), as well as the hippocampus and the cerebral vasculature. Tau pathology, a marker of neurodegeneration and dementia progression, was also found in canine hippocampal synapses. Various epidemiological data show that human patients with neurodegenerative diseases have concurrent intestinal lesions, and histopathological changes in the gastrointestinal (GI) tract occurs decades before neurodegenerative changes. Gut microbiome alterations have also been reported in many neurodegenerative diseases including Alzheimer's (AD) and Parkinson's diseases, as well as inflammatory central nervous system (CNS) diseases. Interestingly, the dog gut microbiome more closely resembles human gut microbiome in composition and functional overlap compared to rodent models. This article reviews the physiology of the gut-brain axis (GBA) and its involvement with neurodegenerative diseases in humans. Additionally, we outline the advantages and weaknesses of current in vitro and in vivo models and discuss future research directions investigating major human neurodegenerative diseases such as AD and Parkinson's diseases using dogs.

19.
BMC Biol ; 17(1): 33, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30975131

ABSTRACT

BACKGROUND: Large animal models, such as the dog, are increasingly being used for studying diseases including gastrointestinal (GI) disorders. Dogs share similar environmental, genomic, anatomical, and intestinal physiologic features with humans. To bridge the gap between commonly used animal models, such as rodents, and humans, and expand the translational potential of the dog model, we developed a three-dimensional (3D) canine GI organoid (enteroid and colonoid) system. Organoids have recently gained interest in translational research as this model system better recapitulates the physiological and molecular features of the tissue environment in comparison with two-dimensional cultures. RESULTS: Organoids were derived from tissue of more than 40 healthy dogs and dogs with GI conditions, including inflammatory bowel disease (IBD) and intestinal carcinomas. Adult intestinal stem cells (ISC) were isolated from whole jejunal tissue as well as endoscopically obtained duodenal, ileal, and colonic biopsy samples using an optimized culture protocol. Intestinal organoids were comprehensively characterized using histology, immunohistochemistry, RNA in situ hybridization, and transmission electron microscopy, to determine the extent to which they recapitulated the in vivo tissue characteristics. Physiological relevance of the enteroid system was defined using functional assays such as optical metabolic imaging (OMI), the cystic fibrosis transmembrane conductance regulator (CFTR) function assay, and Exosome-Like Vesicles (EV) uptake assay, as a basis for wider applications of this technology in basic, preclinical and translational GI research. We have furthermore created a collection of cryopreserved organoids to facilitate future research. CONCLUSIONS: We establish the canine GI organoid systems as a model to study naturally occurring intestinal diseases in dogs and humans, and that can be used for toxicology studies, for analysis of host-pathogen interactions, and for other translational applications.


Subject(s)
Intestines/physiology , Organoids/physiology , Animals , Dog Diseases/physiopathology , Dogs , Gastroenterology , Intestines/physiopathology , Organoids/physiopathology , Stem Cells/cytology , Translational Research, Biomedical
20.
JFMS Open Rep ; 4(2): 2055116918810897, 2018.
Article in English | MEDLINE | ID: mdl-30450217

ABSTRACT

CASE SUMMARY: An 11-year-old female spayed domestic shorthair cat was referred to the Foster Hospital for Small Animals, USA for suspected dysautonomia based on weight loss, vomiting and referral radiographs that showed severe dilation of the esophagus, stomach and entire gastrointestinal tract. After recheck radiographs revealed a decrease in gas compared with the referral images, persistently reduced gastrointestinal motility was deemed less likely; however, cardiomegaly and a soft tissue opacity overlying the esophagus were noted. Echocardiogram identified a pulmonary mass either impinging on or invading the local organs. At necropsy, gross pathology and histopathology showed an aggressive pulmonary carcinoma invading the heart, trachea and esophagus, resulting in a focal esophageal stricture. Gastrointestinal gas dilation was most likely secondary to aerophagia as a result of chronic partial esophageal obstruction. RELEVANCE AND NOVEL INFORMATION: To our knowledge, this is the first reported feline case of invasion of the esophagus and heart by a pulmonary adenocarcinoma. Other than weight loss, the clinical signs for this invasive neoplasm were not evident until the cat was diagnosed with hyperthyroidism and prescribed oral medications. This reinforces the fact that pulmonary adenocarcinoma is difficult to detect clinically until secondary problems from the primary or metastatic neoplasm arise.

SELECTION OF CITATIONS
SEARCH DETAIL
...