Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Cell Biol ; 223(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-38032389

ABSTRACT

Nedd4-2 is an E3 ubiquitin ligase in which missense mutation is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of γ-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of the Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy.


Subject(s)
Astrocytes , Cell Membrane Permeability , Connexin 43 , Nedd4 Ubiquitin Protein Ligases , Potassium Channels, Inwardly Rectifying , Animals , Humans , Mice , Connexin 43/genetics , Mutation, Missense , Proteostasis , Potassium Channels, Inwardly Rectifying/genetics , Nedd4 Ubiquitin Protein Ligases/genetics , Epilepsy
2.
Biol Psychiatry ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38154503

ABSTRACT

BACKGROUND: Neuroligin-3 is a postsynaptic adhesion molecule involved in synapse development and function. It is implicated in rare, monogenic forms of autism, and its shedding is critical to the tumor microenvironment of gliomas. While other members of the neuroligin family exhibit synapse-type specificity in localization and function through distinct interactions with postsynaptic scaffold proteins, the specificity of neuroligin-3 synaptic localization remains largely unknown. METHODS: We investigated the synaptic localization of neuroligin-3 across regions in mouse and human brain samples after validating antibody specificity in knockout animals. We raised a phospho-specific neuroligin antibody and used phosphoproteomics, cell-based assays, and in utero CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) knockout and gene replacement to identify mechanisms that regulate neuroligin-3 localization to distinct synapse types. RESULTS: Neuroligin-3 exhibits region-dependent synapse specificity, largely localizing to excitatory synapses in cortical regions and inhibitory synapses in subcortical regions of the brain in both mice and humans. We identified specific phosphorylation of cortical neuroligin-3 at a key binding site for recruitment to inhibitory synapses, while subcortical neuroligin-3 remained unphosphorylated. In vitro, phosphomimetic mutation of that site disrupted neuroligin-3 association with the inhibitory postsynaptic scaffolding protein gephyrin. In vivo, phosphomimetic mutants of neuroligin-3 localized to excitatory postsynapses, while phospho-null mutants localized to inhibitory postsynapses. CONCLUSIONS: These data reveal an unexpected region-specific pattern of neuroligin-3 synapse specificity, as well as a phosphorylation-dependent mechanism that regulates its recruitment to either excitatory or inhibitory synapses. These findings add to our understanding of how neuroligin-3 is involved in conditions that may affect the balance of excitation and inhibition.

3.
Nucleic Acids Res ; 51(19): 10218-10237, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37697438

ABSTRACT

The seat of higher-order cognitive abilities in mammals, the neocortex, is a complex structure, organized in several layers. The different subtypes of principal neurons are distributed in precise ratios and at specific positions in these layers and are generated by the same neural progenitor cells (NPCs), steered by a spatially and temporally specified combination of molecular cues that are incompletely understood. Recently, we discovered that an alternatively spliced isoform of the TrkC receptor lacking the kinase domain, TrkC-T1, is a determinant of the corticofugal projection neuron (CFuPN) fate. Here, we show that the finely tuned balance between TrkC-T1 and the better known, kinase domain-containing isoform, TrkC-TK+, is cell type-specific in the developing cortex and established through the antagonistic actions of two RNA-binding proteins, Srsf1 and Elavl1. Moreover, our data show that Srsf1 promotes the CFuPN fate and Elavl1 promotes the callosal projection neuron (CPN) fate in vivo via regulating the distinct ratios of TrkC-T1 to TrkC-TK+. Taken together, we connect spatio-temporal expression of Srsf1 and Elavl1 in the developing neocortex with the regulation of TrkC alternative splicing and transcript stability and neuronal fate choice, thus adding to the mechanistic and functional understanding of alternative splicing in vivo.


Subject(s)
Neocortex , Receptor, trkC , Animals , Alternative Splicing , Mammals/metabolism , Neocortex/metabolism , Neurons/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, trkC/chemistry , Receptor, trkC/genetics , Receptor, trkC/metabolism , Mice , Cell Line, Tumor
4.
Neurosci Lett ; 797: 137059, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36623761

ABSTRACT

Kaufman oculocerebrofacial syndrome (KOS) is an autosomal recessive developmental disorder. Inactivating mutations in UBE3B, an E3 ubiquitin ligase gene are causative for KOS. We have reported that towards postnatal week three, its murine ortholog, Ube3b, acts as a negative regulator of the number of dendritic spines. In this study, we investigated the role of Ube3b at the synapse in the young adult mice. With an improved estimation method, images from the hippocampal CA1 and CA2 regions acquired with 3D Stimulated Emission Depletion (3D-STED) microscopy were used to quantify the excitatory synapse numbers. In the young adult mice, the excitatory synapse density was decreased in brain-specific Ube3b conditional knockout mice as compared to the control. Our results indicate the novel role of Ube3b in the maintenance of synapse numbers in the young adult period.


Subject(s)
Synapses , Ubiquitin-Protein Ligases , Animals , Mice , Eye Abnormalities/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Synapses/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
Nat Struct Mol Biol ; 29(12): 1277-1290, 2022 12.
Article in English | MEDLINE | ID: mdl-36482253

ABSTRACT

Translation modulates the timing and amplification of gene expression after transcription. Brain development requires uniquely complex gene expression patterns, but large-scale measurements of translation directly in the prenatal brain are lacking. We measure the reactants, synthesis and products of mRNA translation spanning mouse neocortex neurogenesis, and discover a transient window of dynamic regulation at mid-gestation. Timed translation upregulation of chromatin-binding proteins like Satb2, which is essential for neuronal subtype differentiation, restricts protein expression in neuronal lineages despite broad transcriptional priming in progenitors. In contrast, translation downregulation of ribosomal proteins sharply decreases ribosome biogenesis, coinciding with a major shift in protein synthesis dynamics at mid-gestation. Changing activity of eIF4EBP1, a direct inhibitor of ribosome biogenesis, is concurrent with ribosome downregulation and affects neurogenesis of the Satb2 lineage. Thus, the molecular logic of brain development includes the refinement of transcriptional programs by translation. Modeling of the developmental neocortex translatome is provided as an open-source searchable resource at https://shiny.mdc-berlin.de/cortexomics .


Subject(s)
Protein Biosynthesis , Ribosomes , Mice , Animals , Ribosomes/genetics , Ribosomes/metabolism , Ribosomal Proteins/metabolism , Codon , Brain/metabolism
6.
Front Mol Neurosci ; 15: 1084633, 2022.
Article in English | MEDLINE | ID: mdl-36733269

ABSTRACT

PCSK9 induces lysosomal degradation of the low-density lipoprotein (LDL) receptor (LDLR) in the liver, hereby preventing removal of LDL cholesterol from the circulation. Accordingly, PCSK9 inhibitory antibodies and siRNA potently reduce LDL cholesterol to unprecedented low levels and are approved for treatment of hypercholesterolemia. In addition, PCSK9 inactivation alters the levels of several other circulating lipid classes and species. Brain function is critically influenced by cholesterol and lipid composition. However, it remains unclear how the brain is affected long-term by the reduction in circulating lipids as achieved with potent lipid lowering therapeutics such as PCSK9 inhibitors. Furthermore, it is unknown if locally expressed PCSK9 affects neuronal circuits through regulation of receptor levels. We have studied the effect of lifelong low peripheral cholesterol levels on brain lipid composition and behavior in adult PCSK9 KO mice. In addition, we studied the effect of PCSK9 on neurons in culture and in vivo in the developing cerebral cortex. We found that PCSK9 reduced LDLR and neurite complexity in cultured neurons, but neither PCSK9 KO nor overexpression affected cortical development in vivo. Interestingly, PCSK9 deficiency resulted in changes of several lipid classes in the adult cortex and cerebellum. Despite the observed changes, PCSK9 KO mice had unchanged behavior compared to WT controls. In conclusion, our findings demonstrate that altered PCSK9 levels do not compromise brain development or function in mice, and are in line with clinical trials showing that PCSK9 inhibitors have no adverse effects on cognitive function.

7.
J Mol Biol ; 433(23): 167276, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34599943

ABSTRACT

Split reporter protein-based genetic section systems are widely used to identify and characterize protein-protein interactions (PPI). The assembly of split markers that antagonize toxins, rather than required for synthesis of missing metabolites, facilitates the seeding of high density of cells and selective growth. Here we present a newly developed split chloramphenicol acetyltransferase (split-CAT) -based genetic selection system. The N terminus fragment of CAT is fused downstream of the protein of interest and the C terminus fragment is tethered upstream to its postulated partner. We demonstrate the system's advantages for the study of PPIs. Moreover, we show that co-expression of a functional ubiquitylation cascade where the target and ubiquitin are tethered to the split-CAT fragments results in ubiquitylation-dependent selective growth. Since proteins do not have to be purified from the bacteria and due to the high sensitivity of the split-CAT reporter, detection of challenging protein cascades and post-translation modifications is enabled. In addition, we demonstrate that the split-CAT system responds to small molecule inhibitors and molecular glues (GLUTACs). The absence of ubiquitylation-dependent degradation and deubiquitylation in E. coli significantly simplify the interpretation of the results. We harnessed the developed system to demonstrate that like NEDD4, UBE3B also undergoes self-ubiquitylation-dependent inactivation. We show that self-ubiquitylation of UBE3B on K665 induces oligomerization and inactivation in yeast and mammalian cells respectively. Finally, we showcase the advantages of split-CAT in the study of human diseases by demonstrating that mutations in UBE3B that cause Kaufman oculocerebrofacial syndrome exhibit clear E. coli growth phenotypes.


Subject(s)
Biological Assay/methods , Chloramphenicol O-Acetyltransferase/genetics , Chloramphenicol O-Acetyltransferase/metabolism , Gene Expression , Genes, Reporter , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Enzyme Activation , Escherichia coli/genetics , Escherichia coli/metabolism , Protein Processing, Post-Translational , Proteolysis
8.
Cereb Cortex ; 31(12): 5470-5486, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34259839

ABSTRACT

Neocortical projection neurons are generated by neural progenitor cells (NPCs) within the ventricular and subventricular zone. While early NPCs can give rise to both deep and upper layer neurons, late progenitors are restricted to upper layer neurogenesis. The molecular mechanisms controlling the differentiation potential of early versus late NPCs are unknown. Here, we report a novel function for TrkC-T1, the non-catalytic isoform of the neurotrophin receptor TrkC, that is distinct from TrkC-TK+, the full-length isoform. We provide direct evidence that TrkC-T1 regulates the switch in NPC fate from deep to upper layer neuron production. Elevated levels of TrkC-T1 in early NPCs promote the generation of deep layer neurons. Conversely, downregulation of TrkC-T1 in these cells promotes upper layer neuron fate. Furthermore, we show that TrkC-T1 exerts this control by interaction with the signaling adaptor protein ShcA. TrkC-T1 prevents the phosphorylation of Shc and the downstream activation of the MAP kinase (Erk1/2) pathway. In vivo manipulation of the activity of ShcA or Erk1/2, directly affects cortical neuron cell fate. We thus show that the generation of upper layer neurons by late progenitors is dependent on the downregulation of TrkC-T1 in late progenitor cells and the resulting activation of the ShcA/Erk1/2 pathway.


Subject(s)
Neocortex , Neural Stem Cells , Neocortex/metabolism , Neural Stem Cells/metabolism , Protein Isoforms/metabolism , Receptor, trkC , Signal Transduction/physiology
9.
Sci Adv ; 7(27)2021 Jul.
Article in English | MEDLINE | ID: mdl-34215578

ABSTRACT

The neocortex is stereotypically organized into layers of excitatory neurons arranged in a precise parallel orientation. Here we show that dynamic adhesion both preceding and following radial migration is essential for this organization. Neuronal adhesion is regulated by the Mowat-Wilson syndrome-associated transcription factor Zeb2 (Sip1/Zfhx1b) through direct repression of independent adhesion pathways controlled by Neuropilin-1 (Nrp1) and Cadherin-6 (Cdh6). We reveal that to initiate radial migration, neurons must first suppress adhesion to the extracellular matrix. Zeb2 regulates the multipolar stage by transcriptional repression of Nrp1 and thereby downstream inhibition of integrin signaling. Upon completion of migration, neurons undergo an orientation process that is independent of migration. The parallel organization of neurons within the neocortex is controlled by Cdh6 through atypical regulation of integrin signaling via its RGD motif. Our data shed light on the mechanisms that regulate initiation of radial migration and the postmigratory orientation of neurons during neocortical development.

10.
Mol Cell ; 81(2): 304-322.e16, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33357414

ABSTRACT

Protein synthesis must be finely tuned in the developing nervous system as the final essential step of gene expression. This study investigates the architecture of ribosomes from the neocortex during neurogenesis, revealing Ebp1 as a high-occupancy 60S peptide tunnel exit (TE) factor during protein synthesis at near-atomic resolution by cryoelectron microscopy (cryo-EM). Ribosome profiling demonstrated Ebp1-60S binding is highest during start codon initiation and N-terminal peptide elongation, regulating ribosome occupancy of these codons. Membrane-targeting domains emerging from the 60S tunnel, which recruit SRP/Sec61 to the shared binding site, displace Ebp1. Ebp1 is particularly abundant in the early-born neural stem cell (NSC) lineage and regulates neuronal morphology. Ebp1 especially impacts the synthesis of membrane-targeted cell adhesion molecules (CAMs), measured by pulsed stable isotope labeling by amino acids in cell culture (pSILAC)/bioorthogonal noncanonical amino acid tagging (BONCAT) mass spectrometry (MS). Therefore, Ebp1 is a central component of protein synthesis, and the ribosome TE is a focal point of gene expression control in the molecular specification of neuronal morphology during development.


Subject(s)
DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Neocortex/metabolism , Neurons/metabolism , Protein Biosynthesis , Proteostasis/genetics , RNA-Binding Proteins/genetics , Ribosome Subunits, Large, Eukaryotic/genetics , Animals , Animals, Newborn , Binding Sites , Cell Adhesion Molecules, Neuronal/chemistry , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Line, Tumor , Cryoelectron Microscopy , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Embryo, Mammalian , Female , Male , Mice , Neocortex/cytology , Neocortex/growth & development , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis/genetics , Neurons/cytology , Primary Cell Culture , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Large, Eukaryotic/ultrastructure , Signal Recognition Particle/chemistry , Signal Recognition Particle/genetics , Signal Recognition Particle/metabolism
11.
Mol Psychiatry ; 26(6): 1980-1995, 2021 06.
Article in English | MEDLINE | ID: mdl-32249816

ABSTRACT

Kaufman oculocerebrofacial syndrome (KOS) is a severe autosomal recessive disorder characterized by intellectual disability, developmental delays, microcephaly, and characteristic dysmorphisms. Biallelic mutations of UBE3B, encoding for a ubiquitin ligase E3B are causative for KOS. In this report, we characterize neuronal functions of its murine ortholog Ube3b and show that Ube3b regulates dendritic branching in a cell-autonomous manner. Moreover, Ube3b knockout (KO) neurons exhibit increased density and aberrant morphology of dendritic spines, altered synaptic physiology, and changes in hippocampal circuit activity. Dorsal forebrain-specific Ube3b KO animals show impaired spatial learning, altered social interactions, and repetitive behaviors. We further demonstrate that Ube3b ubiquitinates the catalytic γ-subunit of calcineurin, Ppp3cc, the overexpression of which phenocopies Ube3b loss with regard to dendritic spine density. This work provides insights into the molecular pathologies underlying intellectual disability-like phenotypes in a genetically engineered mouse model.


Subject(s)
Intellectual Disability , Microcephaly , Animals , Calcineurin , Dendritic Spines , Eye Abnormalities , Facies , Intellectual Disability/genetics , Limb Deformities, Congenital , Mice , Mice, Knockout , Microcephaly/genetics , Mutation/genetics , Synapses , Ubiquitin-Protein Ligases/genetics
12.
Cells ; 9(11)2020 11 10.
Article in English | MEDLINE | ID: mdl-33182779

ABSTRACT

Protein ubiquitination belongs to the best characterized pathways of protein degradation in the cell; however, our current knowledge on its physiological consequences is just the tip of an iceberg. The divergence of enzymatic executors of ubiquitination led to some 600-700 E3 ubiquitin ligases embedded in the human genome. Notably, mutations in around 13% of these genes are causative of severe neurological diseases. Despite this, molecular and cellular context of ubiquitination remains poorly characterized, especially in the developing brain. In this review article, we summarize recent findings on brain-expressed HECT-type E3 UBE3 ligases and their murine orthologues, comprising Angelman syndrome UBE3A, Kaufman oculocerebrofacial syndrome UBE3B and autism spectrum disorder-associated UBE3C. We summarize evolutionary emergence of three UBE3 genes, the biochemistry of UBE3 enzymes, their biology and clinical relevance in brain disorders. Particularly, we highlight that uninterrupted action of UBE3 ligases is a sine qua non for cortical circuit assembly and higher cognitive functions of the neocortex.


Subject(s)
Amino Acid Sequence/genetics , Ubiquitin-Protein Ligases/metabolism , Evolution, Molecular , Humans
13.
Neuron ; 106(1): 37-65.e5, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32027825

ABSTRACT

The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities.


Subject(s)
Gene Targeting/methods , Integrases/genetics , Neurons/metabolism , Oocytes/metabolism , Recombination, Genetic/genetics , Spermatozoa/metabolism , Animals , Female , Genes, Reporter , Germ Cells , Male , Mice , Mice, Transgenic , Mosaicism
14.
Neuron ; 100(5): 1097-1115.e15, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30392800

ABSTRACT

The establishment of axon-dendrite polarity is fundamental for radial migration of neurons during cortex development of mammals. We demonstrate that the E3 ubiquitin ligases WW-Containing Proteins 1 and 2 (Wwp1 and Wwp2) are indispensable for proper polarization of developing neurons. We show that knockout of Wwp1 and Wwp2 results in defects in axon-dendrite polarity in pyramidal neurons, and their aberrant laminar cortical distribution. Knockout of miR-140, encoded in Wwp2 intron, engenders phenotypic changes analogous to those upon Wwp1 and Wwp2 deletion. Intriguingly, transcription of the Wwp1 and Wwp2/miR-140 loci in neurons is induced by the transcription factor Sox9. Finally, we provide evidence that miR-140 supervises the establishment of axon-dendrite polarity through repression of Fyn kinase mRNA. Our data delineate a novel regulatory pathway that involves Sox9-[Wwp1/Wwp2/miR-140]-Fyn required for axon specification, acquisition of pyramidal morphology, and proper laminar distribution of cortical neurons.


Subject(s)
Cell Polarity , Cerebral Cortex/growth & development , MicroRNAs/physiology , Neurons/physiology , SOX9 Transcription Factor/physiology , Ubiquitin-Protein Ligases/physiology , Animals , Axons/physiology , Cerebral Cortex/cytology , Dendrites/physiology , Female , Gene Expression Regulation, Developmental , Male , Mice, Knockout , MicroRNAs/genetics , Neurons/cytology , SOX9 Transcription Factor/genetics , Ubiquitin-Protein Ligases/genetics
15.
Elife ; 62017 02 23.
Article in English | MEDLINE | ID: mdl-28231043

ABSTRACT

Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances.


Subject(s)
Cell Differentiation , Hippocampus/physiology , Neurons/drug effects , Neurons/physiology , Oxytocin/metabolism , Signal Transduction , Animals , Cells, Cultured , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...