Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Mater Chem B ; 4(43): 6967-6978, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-32263563

ABSTRACT

Although the impact of composites based on Ti-doped calcium phosphate glasses is low compared with that of bioglass, they have been already shown to possess great potential for bone tissue engineering. Composites made of polylactic acid (PLA) and a microparticle glass of 5TiO2-44.5CaO-44.5P2O5-6Na2O (G5) molar ratio have already demonstrated in situ osteo- and angiogenesis-triggering abilities. As many of the hybrid materials currently developed usually promote osteogenesis but still lack the ability to induce vascularization, a G5/PLA combination is a cost-effective option for obtaining new instructive scaffolds. In this study, nanostructured PLA-ORMOGLASS (organically modified glass) fibers were produced by electrospinning, in order to fabricate extra-cellular matrix (ECM)-like substrates that simultaneously promote bone formation and vascularization. Physical-chemical and surface characterization and tensile tests demonstrated that the obtained scaffolds exhibited homogeneous morphology, higher hydrophilicity and enhanced mechanical properties than pure PLA. In vitro assays with rat mesenchymal stem cells (rMSCs) and rat endothelial progenitor cells (rEPCs) also showed that rMSCs attached and proliferated on the materials influenced by the calcium content in the environment. In vivo assays showed that hybrid composite PLA-ORMOGLASS fibers were able to promote the formation of blood vessels. Thus, these novel fibers are a valid option for the design of functional materials for tissue engineering applications.

2.
Acta Biomater ; 9(9): 8200-13, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23743130

ABSTRACT

Several studies have reported the benefits of mesenchymal stem cells (MSCs) for bone tissue engineering. However, vascularization remains one of the main obstacles that must be overcome to reconstruct large bone defects. In vitro prevascularization of the three-dimensional (3-D) constructs using co-cultures of human progenitor-derived endothelial cells (PDECs) with human bone marrow mesenchymal stem cells (HBMSCs) appeared as a potential strategy. However, the crosstalk between the two lineages has been studied in two-dimensional (2-D), but remains unknown in 3-D. The aim of this study is to investigate the cell interactions between PDECs and HBMSCs in a porous matrix composed of polysaccharides. This biodegradable scaffold promotes cell interactions by inducing multicellular aggregates composed of HBMSCs surrounded by PDECs. Cell aggregation contributes to the formation of junctional proteins composed of Connexin43 (Cx43) and VE-cadherin, and an activation of osteoblastic differentiation of HBMSCs stimulated by the presence of PDECs. Inhibition of Cx43 by mimetic peptide 43GAP27 induced a decrease in mRNA levels of Cx43 and all the bone-specific markers. Finally, subcutaneous implantations for 3 and 8 weeks in NOG mice revealed an increase in osteoid formation with the tissue-engineered constructs seeded with HBMSCs/PDECs compared with those loaded with HBMSCs alone. Taking together, these results demonstrate that this 3-D microenvironment favored cell communication, osteogenesis and bone formation.


Subject(s)
Endothelial Cells/cytology , Endothelial Cells/physiology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Osteogenesis/physiology , Polysaccharides/chemistry , Tissue Scaffolds , Cell Communication/physiology , Equipment Design , Equipment Failure Analysis , Humans , Materials Testing , Porosity
3.
Biomed Mater ; 7(5): 054108, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22972389

ABSTRACT

Nanocrystalline apatites (NCA) are the inorganic components of mineralized tissues and they have been recently proposed as biomaterials for drug delivery systems. Bisphosphonates (BPs) are currently the reference drugs used to treat diseases involving bone disorders such as osteoporosis. Nevertheless, the interaction phenomena between BP molecules and apatite nanocrystals of bone are not well understood. Therefore, the adsorption characteristics have been examined and cellular activity of tiludronate molecules on NCA as models of bone mineral has been investigated. Adsorption experiments of tiludronate onto NCA were carried out and revealed a Langmuir-type adsorption isotherm. The uptake of tiludronate molecules is associated with a release of phosphate ions, indicating that the main reaction is an ion exchange process involving surface anions. The results evidence the strong affinity of BP molecules for the apatitic surface. The interactions of NCA-tiludronate associations with human osteoprogenitor cells and human bone marrow stromal cells do not reveal any cytotoxicity and evidence the activity of adsorbed tiludronate molecules. Moreover, an evolution of the physico-chemical characteristics of the apatitic substrate during biological study was observed, highlighting the existence of dynamic interactions. This work contributes to clarifying the reaction mechanisms between BPs and biomimetic apatites.


Subject(s)
Apatites/chemistry , Biocompatible Materials/chemistry , Bone Marrow Cells/cytology , Diphosphonates/chemistry , Osteoblasts/cytology , Biomimetic Materials/chemistry , Bone Density Conservation Agents/chemistry , Calcification, Physiologic , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Drug Delivery Systems , Humans , Materials Testing , Microscopy, Electron, Scanning , Nanoparticles/chemistry , Powder Diffraction , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Stromal Cells/cytology
4.
J Tissue Eng Regen Med ; 6(10): e51-60, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22740324

ABSTRACT

Association of the bone-forming osteoblasts (OBs) and vascular endothelial cells (ECs) into a biomaterial composite provides a live bone graft substitute that can repair the bone defect when implanted. An intimate functional relationship exists between these cell types. This communication is crucial to the coordinated cell behaviour necessary for bone development and remodelling. Previous studies have shown that direct co-culture of primary human osteoprogenitors (HOPs) with primary human umbilical vein endothelial cells (HUVECs) stimulates HOPs differentiation and induces tubular-like networks. The present work aims to test the use of human bone marrow stromal cells (HBMSCs) co-cultured with human endothelial progenitor cells in order to assess whether progenitor-derived ECs (PDECs) could support osteoblastic differentiation as mature ECs do. Indeed, data generated from the literature by different laboratories considering these co-culture systems appear difficult to compare. Monocultures of HUVECs, HOPs, HBMSCs (in a non-orientated lineage), PDECs (from cord blood) were used as controls and four combinations of co-cultures were undertaken: HBMSCs-PDECs, HBMSCs-HUVECs, HOPs-PDECs, HOPs-HUVECs with ECs (mature or progenitor) for 6 h to 7 days. At the end of the chosen co-culture time, intracellular alkaline phosphatase (ALP) activity was detected in HOPs and HBMSCs and quantified in cell extracts. Quantitative real-time polymerase chain reaction (qPCR) of ALP was performed over time and vascular endothelial growth factor (VEGF) was measured. After 21 days, calcium deposition was observed, comparing mono- and co-cultures. We confirm that ECs induce osteoblastic differentiation of mesenchymal stem cells in vitro. Moreover, HUVECs can be replaced by PDECs, the latter being of great interest in tissue engineering.


Subject(s)
Calcification, Physiologic , Cell Differentiation , Human Umbilical Vein Endothelial Cells/metabolism , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Adult , Alkaline Phosphatase/biosynthesis , Calcium/metabolism , Cells, Cultured , Coculture Techniques , Female , Human Umbilical Vein Endothelial Cells/cytology , Humans , Male , Mesenchymal Stem Cells/cytology , Middle Aged , Osteoblasts/cytology , Tissue Engineering/methods
5.
Eur Cell Mater ; 21: 341-54, 2011 Apr 11.
Article in English | MEDLINE | ID: mdl-21484704

ABSTRACT

For bone tissue engineering, human Adipose Derived Stem Cells (hADSCs) are proposed to be associated with a scaffold for promoting bone regeneration. After implantation, cellularised scaffolds require a non-invasive method for monitoring their fate in vivo. The purpose of this study was to use Magnetic Resonance Imaging (MRI)-based tracking of these cells, labelled with magnetic agents for in vivo longitudinal assessment. hADSCs were isolated from adipose tissue and labelled with USPIO-rhodamine (Ultrasmall SuperParamagnetic Iron Oxide). USPIO internalisation, absence of toxicity towards hADSCs, and osteogenic differentiation of the labelled cells were evaluated in standard culture conditions. Labelled cells were then seeded within a 3D porous polysaccharide-based scaffold and imaged in vitro using fluorescence microscopy and MRI. Cellularised scaffolds were implanted subcutaneously in nude mice and MRI analyses were performed from 1 to 28 d after implantation. In vitro, no effect of USPIO labelling on cell viability and osteogenic differentiation was found. USPIO were efficiently internalised by hADSCs and generated a high T2* contrast. In vivo MRI revealed that hADSCs remain detectable until 28 d after implantation and could migrate from the scaffold and colonise the area around it. These data suggested that this scaffold might behave as a cell carrier capable of both holding a cell fraction and delivering cells to the site of implantation. In addition, the present findings evidenced that MRI is a reliable technique to validate cell-seeding procedures in 3D porous scaffolds, and to assess the fate of hADSCs transplanted in vivo.


Subject(s)
Bone and Bones/cytology , Magnetic Resonance Imaging/methods , Stromal Cells/cytology , Tissue Engineering/methods , Tissue Scaffolds , Adipose Tissue/cytology , Alkaline Phosphatase/metabolism , Animals , Bone and Bones/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Survival , Cell Transplantation/methods , Cells, Cultured , Collagen Type I/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Dextrans/chemistry , Dextrans/metabolism , Dextrans/ultrastructure , Gene Expression , Humans , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Mice , Mice, Nude , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Osteogenesis , Reverse Transcriptase Polymerase Chain Reaction , Rhodamines/chemistry , Rhodamines/metabolism , Stromal Cells/chemistry , Stromal Cells/metabolism
6.
Acta Biomater ; 6(7): 2494-500, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19819356

ABSTRACT

In parallel with ink-jet printing and bioplotting, biological laser printing (BioLP) using laser-induced forward transfer has emerged as an alternative method in the assembly and micropatterning of biomaterials and cells. This paper presents results of high-throughput laser printing of a biopolymer (sodium alginate), biomaterials (nano-sized hydroxyapatite (HA) synthesized by wet precipitation) and human endothelial cells (EA.hy926), thus demonstrating the interest in this technique for three-dimensional tissue construction. A rapid prototyping workstation equipped with an IR pulsed laser (tau=30 ns, lambda=1064 nm, f=1-100 kHz), galvanometric mirrors (scanning speed up to 2000 mm s(-1)) and micrometric translation stages (x, y, z) was set up. The droplet generation process was controlled by monitoring laser fluence, focalization conditions and writing speed, to take into account its mechanism, which is driven mainly by bubble dynamics. Droplets 70 microm in diameter and containing around five to seven living cells per droplet were obtained, thereby minimizing the dead volume of the hydrogel that surrounds the cells. In addition to cell transfer, the potential of using high-throughput BioLP for creating well-defined nano-sized HA patterns is demonstrated. Finally, bioprinting efficiency criteria (speed, volume, resolution, integrability) for the purpose of tissue engineering are discussed.


Subject(s)
Biocompatible Materials , Tissue Engineering , Lasers
7.
Trends Biotechnol ; 27(10): 562-71, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19683818

ABSTRACT

There have been extensive research efforts to develop new strategies for bone tissue engineering. These have mainly focused on vascularization during the development and repair of bone. It has been hypothesized that pre-seeding a scaffold with endothelial cells could improve angiogenesis and bone regeneration through a complex dialogue between endothelial cells and bone-forming cells. Here, we focus on the paracrine signals secreted by both cell types and the effects they elicit. We discuss the other modes of cell-to-cell communication that could explain their cell coupling and reciprocal interactions. Endothelial cell-derived tube formation in a scaffold and the dialogue between endothelial cells and mesenchymal stem cells provide promising means of generating vascular bone tissue-engineered constructs.


Subject(s)
Cell Communication , Endothelial Cells/physiology , Osteocytes/physiology , Tissue Engineering/methods , Humans , Models, Biological , Neovascularization, Physiologic , Osteogenesis
8.
Acta Biomater ; 5(9): 3581-92, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19467347

ABSTRACT

The first aim of the present study was to investigate the capacity of a cyclo-DfKRG-coated hydroxyapatite-titanium alloy (Ti-HA-RGD) to activate in vitro human osteoprogenitor cells adhesion and differentiation. The second purpose was to examine in vivo the role of a autologous cell seeding on cyclo-DfKRG-functionalized materials to provide bone repair after implantation in femoral condyle of rabbits. Our in vitro results have demonstrated that both titanium alloy functionalized with hydroxyapatite (Ti-HA-RGD and Ti-HA) contributed to higher cell adhesion than titanium alloy alone respectively 85 and 55% vs 15% compared to tissue culture polystyrene after one hour of cell seeding. As for differentiation, after 3 days of culture, Ti-HA presented the highest increase of ALP mRNA of all surfaces studied. Ti-HA-RGD showed an intermediate value about half as high as Ti-HA. Moreover after 3 days, both Ti-HA and Ti-HA-RGD surfaces showed the highest increase of cbfa1 mRNA expression. Two weeks following implantation, in vivo findings revealed that percentage of lacunae contact observed with pre-cellularized Ti-HA-RGD samples remains significantly lower than with Ti-HA group (10.5+/-9.6 % vs 33.7+/-11.5 %, P<0.03). Meanwhile, RGD peptide coating had no significant additional effect on the bone implant contact and area. Moreover, histomorphometry analysis revealed that implantation of pre-cellularized RGD coated materials with ROP cells increased significantly peri-implant fibrous area (24+/-11.6% vs 3+/-1.7% for Ti-HA-RGD, P<0.02). RGD coatings demonstrated osteoblastic adhesion, differentiation and in vivo bone regeneration at most equivalent to HA coatings.


Subject(s)
Osteoblasts/physiology , Peptides, Cyclic/metabolism , Stem Cells/physiology , Alloys , Animals , Cell Adhesion/physiology , Cell Differentiation/physiology , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/metabolism , Humans , Materials Testing , Osteoblasts/cytology , Peptides, Cyclic/chemistry , Rabbits , Random Allocation , Stem Cells/cytology , Surface Properties , Titanium
9.
Ann Chir Plast Esthet ; 54(1): 16-20, 2009 Feb.
Article in French | MEDLINE | ID: mdl-19042073

ABSTRACT

UNLABELLED: Based on a new concept, a procedure combining induced membranes and cancellous autografts allows the reconstruction of wide diaphyseal defects. To date, this procedure is limited by the amount of cancellous bone available from the patient and by the related morbidity at the donor site. The aim of this study was to evaluate the biological effect of induced membranes on a cylindrical-shaped ceramic implants loaded with OP-1 in heterotopic site. MATERIALS AND METHODS: Sixty hydroxyapatite tricalcium phosphate (HA-TCP) implants, 20 of which being loaded with a bone growth factor (rhOP-1) were inserted either in a subcutaneous tunnel or within a previously induced membrane on the back of rabbits. There were two time-points at four and 16 weeks. Implants were investigated at three different levels (extremities and middle). RESULTS: None of the untreated implants showed any evidence of bone formation. Implants inserted in an induced membrane presented with less resorption. Bone ingrowth within the pores of the materials was significantly higher when the implants were inserted into the induced membrane whatever the time-point considered. CONCLUSION: The membrane seems to play the role it was assigned, i.e. to protect and revascularize the implant, thus favouring osteogenesis that occurs in 80% of the implants after four months.


Subject(s)
Calcium Phosphates/metabolism , Ceramics , Implants, Experimental , Membranes, Artificial , Osteogenesis , Transforming Growth Factors/metabolism , Animals , Back , Choristoma , Guided Tissue Regeneration/methods , Models, Animal , Rabbits , Subcutaneous Tissue
10.
Bone ; 42(6): 1080-91, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18387350

ABSTRACT

Osteogenesis occurs in striking interaction with angiogenesis. There is growing evidence that endothelial cells are involved in the modulation of osteoblast differentiation. We hypothesized that primary human umbilical vein endothelial cells (HUVEC) should be able to modulate primary human osteoprogenitors (HOP) function in an in vitro co-culture model. In a previous study we demonstrated that a 3 day to 3 week co-culture stimulates HOP differentiation markers such as Alkaline Phosphatase (ALP) activity and mineralization. In the present study we addressed the effects induced by the co-culture on HOP within the first 48 hours. As a prerequisite, we validated a method based on immuno-magnetic beads to separate HOP from HUVEC after co-culture. Reverse transcription-real time quantitative PCR studies demonstrated up-regulation of the ALP expression in the co-cultured HOP, confirming previous results. Surprisingly, down-regulation of runx2 and osteocalcin was also shown. Western blot analysis revealed co-culture induced down-regulation of Connexin43 expression in both cell types. Connexin43 function may be altered in co-cultured HOP as well. Stimulation of the cAMP pathway was able to counterbalance the effect of the co-culture on the ALP activity, but was not able to rescue runx2 mRNA level. Co-culture effect on HOP transcriptome was analyzed with GEArray cDNA microarray showing endothelial cells may also modulate HOP extracellular matrix production. In accordance with previous work, we propose endothelial cells may support initial osteoblastic proliferation but do not alter the ability of the osteoblasts to produce extracellular mineralizing matrix.


Subject(s)
Endothelial Cells/physiology , Gene Expression Regulation , Osteoblasts/physiology , Stem Cells/physiology , Umbilical Veins/cytology , Alkaline Phosphatase/metabolism , Biomarkers/metabolism , Cell Differentiation/physiology , Cell Separation/methods , Cells, Cultured , Coculture Techniques , Connexin 43/genetics , Connexin 43/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Cyclic AMP/metabolism , Endothelial Cells/cytology , Gap Junctions/metabolism , Gene Expression Profiling , Humans , Immunomagnetic Separation , Oligonucleotide Array Sequence Analysis , Osteoblasts/cytology , Plant Lectins/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Stem Cells/cytology
11.
Biomed Mater Eng ; 16(4 Suppl): S53-60, 2006.
Article in English | MEDLINE | ID: mdl-16823113

ABSTRACT

In the field of osseous substitution, the possibilities being offered to the surgeons prove sometimes difficult to apply in particular in the case of great losses of osseous substance. For these reasons, it is necessary to develop innovative techniques to satisfy the request increasing for substitutes and to see appearing on the market solutions combining availability, perenniality and biosecurity of the implants. The implantation of stem cells in a biomaterial opens a way of development of therapeutic substitute. Moreover, in order to optimize the rehabitation of the biomaterials by the cells and the host tissues, the second approach consists in modifying the surface of materials by the coating or the grafting of adhesive factors in order to stimulate their colonization. At least, one cannot consider a tissue mechanism of repair without a better knowledge of the respective role of the various cell populations implied in the rebuilding of this tissue and their cell to cell communication processes.


Subject(s)
Biocompatible Materials/chemistry , Bone Substitutes/chemistry , Cell Communication , Tissue Engineering/methods , Alloys/chemistry , Bone Regeneration , Cell Transplantation , Coculture Techniques , Endothelial Cells/cytology , Humans , Osseointegration , Peptides/chemistry , Stem Cells/metabolism , Titanium/chemistry
12.
Colloids Surf B Biointerfaces ; 44(1): 15-24, 2005 Jul 25.
Article in English | MEDLINE | ID: mdl-15982857

ABSTRACT

Understanding how cells sense their environment and are able to regulate their metabolism is of great importance for the success of biomaterials implantation. Self assembled monolayers (SAMs) are in use nowadays to model the surface of such materials. They permit the control of different surface parameters (like chemistry, surface energy and topography) enabling to get a greater insight in cells behaviour when interacting with surfaces and thus, in the future, to enhance surface properties of biomaterials. As sterilisation is the compulsory step for in vitro and in vivo assays with living biological materials, it is important to know how SAMs react under sterilisation techniques in use on biomaterials. In this work, the effect of three types of sterilisation techniques: gamma-irradiation, mostly used on biomaterials, dry heat and steam autoclaving, have been investigated on NH2 and CH3 terminated SAMs. Gamma-irradiation destructs drastically the NH2 and partially the CH3 monolayers by producing oxidative compounds (COOH, C=O, C-OH). The main product induced by gamma-irradiation on NH2 monolayers is carboxylic acid, whereas CH3 shows an important increase in the amount of alcoholic groups. This difference in deterioration is assumed to be due to the higher stability of the CH3 monolayer. Steam autoclaving to a lesser extent gives the same results on NH2 monolayers. Dry heat seems to be the most reliable technique, which can be used on such surfaces as it removes physically adsorbed organic contaminants without affecting the integrity of the surface.


Subject(s)
Biocompatible Materials/radiation effects , Bone Marrow Cells/ultrastructure , Sterilization/standards , Biocompatible Materials/chemistry , Bone Marrow Cells/chemistry , Bone Marrow Cells/radiation effects , Cell Adhesion , Cells, Cultured , Gamma Rays , Hot Temperature , Humans , Spectrum Analysis , Surface Properties/radiation effects
13.
J Mater Sci Mater Med ; 15(7): 779-86, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15446238

ABSTRACT

Ceramics possess osteoconductive properties but exhibit no intrinsic osteoinductive capacity. Consequently, they are unable to induce new bone formation in extra osseous sites. In order to develop bone substitutes with osteogenic properties, one promising approach consists of creating hybrid materials by associating in vitro biomaterials with osteoprogenitor cells. With this aim, we have developed a novel strategy of biomimetic modification to enhance osseointegration of hydroxyapatite (HA) implants. RGD-containing peptides displaying different conformations (linear GRGDSPC and cyclo-DfKRG) were grafted onto HA surface by means of a three-step reaction procedure: silanisation with APTES, cross-linking with N-succinimidyl-3-maleimidopropionate and finally immobilisation of peptides thanks to thiol bonding. Whole process was performed in anhydrous conditions to ensure the reproducibility of the chemical functionalisation. The three-step reaction procedure was characterised by high resolution X-ray photoelectron spectroscopy. Efficiency of this biomimetic modification was finally demonstrated by measuring the adhesion of osteoprogenitor cells isolated from HBMSC onto HA surface.


Subject(s)
Cell Adhesion/physiology , Durapatite , Oligopeptides/pharmacology , Osteoblasts/physiology , Prostheses and Implants , Amino Acid Sequence , Bone Marrow Cells/cytology , Cell Adhesion/drug effects , Cells, Cultured , Ceramics , Humans , Osteoblasts/cytology , Osteoblasts/drug effects , Osteogenesis , Stromal Cells/cytology , Stromal Cells/physiology
14.
Cell Mol Biol (Noisy-le-grand) ; 50(3): 255-66, 2004 May.
Article in English | MEDLINE | ID: mdl-15209346

ABSTRACT

Atomic force microscopy (AFM) is a non-invasive microscopy to explore living biological systems like cells in liquid environment. Thus AFM is an appropriate tool to investigate surface chemical modification and its influence on biological systems. In particular, control over biomaterial surface chemistry can result in a regulated cell response. This report investigates the influence of adhesive and non-adhesive surfaces on the cell morphology and the influence of the cytoskeleton structure on the local mechanical properties. In this study, the main work concerns a thorough investigation of the height images obtained with an AFM as therecorded images provide the evolution of the mechanical properties of the cell as function of its local structure. Information on the cell elasticity due to the cytoskeleton organization is deduced when comparing the AFM tip indentation depth versus the distance between the cytoskeleton bundles for the different samples.


Subject(s)
Cells/ultrastructure , Cytoskeleton/ultrastructure , Microscopy, Atomic Force , Cell Adhesion , Cell Shape , Elasticity , Osteoblasts/ultrastructure , Plastics/chemistry , Silicon Dioxide/chemistry
15.
Biomaterials ; 25(19): 4837-46, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15120531

ABSTRACT

In the present paper, specific interest has been devoted to the design of new hybrid materials associating Ti-6Al-4V alloy and osteoprogenitor cells through the grafting of two RGD containing peptides displaying a different conformation (linear RGD and cyclo-DfKRG) onto titanium surface. Biomimetic modification was performed by means of a three-step reaction procedure: silanization with APTES, cross-linking with SMP and finally immobilization of peptides thanks to thiol bonding. The whole process was performed in anhydrous conditions to ensure homogeneous biomolecules layout as well as to guarantee a sufficient amount of biomolecules grafted onto surfaces. The efficiency of this new route for biomimetic modification of titanium surface was demonstrated by measuring the adhesion between 1 and 24 h of osteoprogenitor cells isolated from HBMSC. Benefits of the as-proposed method were related to the high concentration of peptides grafted onto the surface (around 20 pmol/mm(2)) as well as to the capacity of cyclo-DfKRG peptide to interact with integrin receptors. Moreover, High Resolution beta-imager (using [(35)S]-Cys) has exhibited the stability of peptides grafted onto the surface when treated in harsh conditions.


Subject(s)
Hematopoietic Stem Cells/physiology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Osteoblasts/physiology , Titanium/chemistry , Alloys , Biomimetic Materials/chemistry , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Extracellular Matrix Proteins/chemistry , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Materials Testing , Molecular Conformation , Osteoblasts/cytology , Osteoblasts/drug effects , Prostheses and Implants , Surface Properties
16.
J Orthop Res ; 22(1): 73-9, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14656662

ABSTRACT

Based on a new concept, a procedure combining induced membranes and cancellous autografts allows the reconstruction of wide diaphyseal defects. In the first stage of this procedure, a cement spacer is inserted into the defect; the spacer is responsible for the formation of a pseudo-synovial membrane. In the second stage, the defect is reconstructed two months later by an autologous cancellous bone graft. The aim of this study was to evaluate the histological and biochemical characteristics of these membranes induced in rabbits. Histological studies carried out two, four, six, and eight weeks following implantation revealed a rich vascularization. Qualitative and quantitative immunochemistry showed production of growth factors (VEGF, TGFbeta1) and osteoinductive factors (BMP-2). Maximum BMP-2 production was obtained four weeks after the implantation, and, at this time, induced membranes favored human bone marrow stromal cell differentiation to the osteoblastic lineage. Should these results be confirmed in humans, bone reconstruction could be carried out earlier than previously thought and in better conditions than expected, the membrane playing the role of an in situ delivery system for growth and osteoinductive factors.


Subject(s)
Bone Regeneration/physiology , Bone Transplantation/methods , Growth Substances/metabolism , Synovial Membrane/metabolism , Animals , Bone Cements , Bone Marrow Cells/cytology , Bone Morphogenetic Protein 2 , Bone Morphogenetic Proteins/metabolism , Cell Differentiation , Cell Division , Rabbits , Stromal Cells/cytology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1 , Vascular Endothelial Growth Factor A/metabolism
17.
Cytometry A ; 54(1): 36-47, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12820119

ABSTRACT

BACKGROUND: Atomic force microscopy (AFM) can be used to visualize the cell morphology in an aqueous environment and in real time. It also allows the investigation of mechanical properties such as cell compliance as a function of cell attachment. This study characterized and evaluated osteoblast adhesion by AFM. METHODS: Human bone marrow stromal cells were cultured on two types of surface to induce weak and strong cellular adhesions. RESULTS: Cells were considered as spreading if they had a flattened and lengthened shape and a cytoskeletal organization in the submembrane cytosolic region. Cell detachment demonstrated different adhesion states between adherent cells to be distinguished. The stability of the cytoskeletal fibers indicated that cells were adherent. The elastic modulus was estimated by two complementary approaches. The values deduced were between 3 x 10(2) and 2 x 10(5) Nm(-2) according to the state of cell adhesion and the approaches used to measure this elastic modulus. CONCLUSIONS: Although the results were qualitative, a relation may be deduced between the elasticity of living cells as demonstrated by cytoskeletal organization and the state of cell adhesion. The technique could be used to determine the adhesion state of an adherent osteoblast observed under AFM.


Subject(s)
Bone Marrow Cells/cytology , Image Cytometry , Microscopy, Atomic Force , Osteoblasts/cytology , Bone Marrow Cells/physiology , Cell Adhesion/physiology , Cells, Cultured , Humans , Microscopy, Electron, Scanning , Osteoblasts/physiology , Stromal Cells/physiology
18.
Biochim Biophys Acta ; 1593(1): 17-27, 2002 Dec 16.
Article in English | MEDLINE | ID: mdl-12431780

ABSTRACT

Spherulites are multilamellar vesicles consisting of concentric shells that can encapsulate small organic molecules or macromolecules. We investigate the possibility of targeting neutral spherulites to adherent culture cells by functionalizing their surface with RGD-containing ligands. The strength and specificity of association of RGD spherulites with several cell lines (EAhy 926 endothelial cell line, human umbilical vein endothelial cell (HUVEC) and human osteoprogenitor (HOP) primary cells) was studied, and the molecular interaction of RGD spherulites with the EAhy 926 cell surface was investigated. We show that, after binding to cells, spherulites are internalized.


Subject(s)
Membranes, Artificial , Oligopeptides/administration & dosage , Biological Transport , Cell Line , Drug Carriers , Drug Delivery Systems , Humans , Jurkat Cells , Kinetics , Ligands , Oligopeptides/metabolism , Organ Specificity
19.
Am J Physiol Cell Physiol ; 282(4): C775-85, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11880266

ABSTRACT

Bone development and remodeling depend on complex interactions between bone-forming osteoblasts and other cells present within the bone microenvironment, particularly vascular endothelial cells that may be pivotal members of a complex interactive communication network in bone. Our aim was to investigate the interaction between human umbilical vein endothelial cells (HUVEC) and human bone marrow stromal cells (HBMSC). Cell differentiation analysis performed with different cell culture models revealed that alkaline phosphatase activity and type I collagen synthesis were increased only by the direct contact of HUVEC with HBMSC. This "juxtacrine signaling" could involve a number of different heterotypic connexions that require adhesion molecules or gap junctions. A dye coupling assay with Lucifer yellow demonstrated a functional coupling between HUVEC and HBMSC. Immunocytochemistry revealed that connexin43 (Cx43), a specific gap junction protein, is expressed not only in HBMSC but also in the endothelial cell network and that these two cell types can communicate via a gap junctional channel constituted at least by Cx43. Moreover, functional inhibition of the gap junction by 18alpha-glycyrrhetinic acid treatment or inhibition of Cx43 synthesis with oligodeoxyribonucleotide antisense decreased the effect of HUVEC cocultures on HBMSC differentiation. This stimulation could be mediated by the intercellular diffusion of signaling molecules that permeate the junctional channel.


Subject(s)
Cell Communication/physiology , Endothelium, Vascular/cytology , Gap Junctions/physiology , Osteoblasts/cytology , Stem Cells/cytology , Bone Marrow Cells/cytology , Cell Differentiation/physiology , Cells, Cultured , Coculture Techniques , Connexin 43/genetics , Connexin 43/metabolism , Gap Junctions/metabolism , Gene Expression/physiology , Humans , Mesoderm/cytology , Stromal Cells/cytology , Umbilical Veins/cytology
20.
Biomaterials ; 23(2): 585-96, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11761179

ABSTRACT

Cell adhesion directly influences cell growth, differentiation and migration as well as morphogenesis, integrity and repair. The extracellular matrix (ECM) elaborated by osteoblast cells constitutes a regulator of the cell adhesion process and then of the related phenomenon. These regulatory effects of ECM are mediated through integrins and some of them are able to bind RGD sequences. The aim of this study was to determine the role of the sequence and the structure of RGD-containing peptides (linear and cyclic) as well as their role in the cell adhesion process. Cell adhesion assays onto ECM proteins coated surfaces were performed using a range of linear and cyclic RGD-containing peptides. We showed a different human osteoprogenitor cell adhesion according to the coating for ECM proteins and for RGD-peptides. Inhibition assays using peptides showed different responses depending on the coated protein. Depending on the amino-acid sequence and the structure of the peptides (cyclic linear), we observed 100% inhibition of cell adhesion onto vitronectin. These results suggest the importance of sequence, structure and conformation of the peptide, which may play a crucial function in the ligand/receptor interaction and/or in the stability of the interaction.


Subject(s)
Cell Adhesion , Oligopeptides/physiology , Osteoblasts/cytology , Peptides, Cyclic/physiology , Stem Cells/cytology , Adult , Base Sequence , Cell Separation , DNA Primers , Extracellular Matrix Proteins/metabolism , Flow Cytometry , Humans , Integrins/metabolism , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...