Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Environ Sci Technol ; 58(23): 10216-10226, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38802328

ABSTRACT

Compared with the ever-growing information about the anthropogenic discharge of nutrients, metals, and antibiotics on the disturbance of antibiotic resistance genes (ARGs), less is known about how the potential natural stressors drive the evolutionary processes of antibiotic resistance. This study examined how soil resistomes evolved and differentiated over 30 years in various land use settings with spatiotemporal homogeneity and minimal human impact. We found that the contents of soil organic carbon, nitrogen, soil microbial biomass, and bioavailable heavy metals, as well as related changes in the antibiotic resistome prevalence including diversity and abundance, declined in the order of grassland > cropland > bareland. Sixty-nine remaining ARGs and 14 mobile genetic elements (MGEs) were shared among three land uses. Multiple factors (i.e., soil properties, heavy metals, bacterial community, and MGEs) contributed to the evolutionary changes of the antibiotic resistome, wherein the resistome profile was dominantly driven by MGEs from both direct and indirect pathways, supported by a partial least-squares path model analysis. Our results suggest that pathways to mitigate ARGs in soils can coincide with land degradation processes, posing a challenge to the common goal of managing our environment sustainably.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Microbial , Soil Microbiology , Soil , Soil/chemistry , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology
2.
Environ Sci Technol ; 58(16): 7124-7132, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38599582

ABSTRACT

Often large quantities of plastics are found in compost, with price look-up stickers being a major but little-explored component in the contamination path. Stickers glued to fruit or vegetable peels usually remain attached to the organic material despite sorting processes in the composting plant. Here, we investigated the effects of industrial composting on the structural alterations of these stickers. Commercial polypropylene (PP) stickers on banana peels were added to a typical organic material mixture for processing in an industrial composting plant and successfully resampled after a prerotting (11 days) and main rotting step (25 days). Afterward, both composted and original stickers were analyzed for surface and structural changes via scanning electron microscopy, Fourier-transform infrared spectroscopy, and micro- and nano-X-ray computed tomography (CT) combined with deep learning approaches. The composting resulted in substantial surface changes and degradation in the form of microbial colonization, deformation, and occurrence of cracks in all stickers. Their pore volumes increased from 16.7% in the original sticker to 26.3% at the end of the compost process. In a similar way, the carbonyl index of the stickers increased. Micro-CT images additionally revealed structural changes in the form of large adhesions that penetrated the surface of the sticker. These changes were accompanied by delamination after 25 days of composting, thus overall hinting at the degradation of the stickers and the subsequent formation of smaller microplastic pieces.


Subject(s)
Composting , Fruit , Plastics , Tomography, X-Ray Computed , Soil/chemistry , Microscopy, Electron, Scanning , Polypropylenes/chemistry
3.
Glob Chang Biol ; 30(1): e17068, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273559

ABSTRACT

Soils in hyper-arid climates, such as the Chilean Atacama Desert, show indications of past and present forms of life despite extreme water limitations. We hypothesize that fog plays a key role in sustaining life. In particular, we assume that fog water is incorporated into soil nutrient cycles, with the inland limit of fog penetration corresponding to the threshold for biological cycling of soil phosphorus (P). We collected topsoil samples (0-10 cm) from each of 54 subsites, including sites in direct adjacency (<10 cm) and in 1 m distance to plants, along an aridity gradient across the Coastal Cordillera. Satellite-based fog detection revealed that Pacific fog penetrates up to 10 km inland, while inland sites at 10-23 km from the coast rely solely on sporadic rainfall for water supply. To assess biological P cycling we performed sequential P fractionation and determined oxygen isotope of HCl-extractable inorganic P δ 18 O HCl - P i $$ \mathrm{P}\ \left({\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}}\right) $$ . Total P (Pt ) concentration exponentially increased from 336 mg kg-1 to a maximum of 1021 mg kg-1 in inland areas ≥10 km. With increasing distance from the coast, soil δ 18 O HCl - P i $$ {\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}} $$ values declined exponentially from 16.6‰ to a constant 9.9‰ for locations ≥10 km inland. Biological cycling of HCl-Pi near the coast reached a maximum of 76%-100%, which could only be explained by the fact that fog water predominately drives biological P cycling. In inland regions, with minimal rainfall (<5 mm) as single water source, only 24 ± 14% of HCl-Pi was biologically cycled. We conclude that biological P cycling in the hyper-arid Atacama Desert is not exclusively but mainly mediated by fog, which thus controls apatite dissolution rates and related occurrence and spread of microbial life in this extreme environment.


Subject(s)
Phosphorus , Soil , Oxygen Isotopes , Water , Chile , Desert Climate
4.
Sci Total Environ ; 855: 158889, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36150589

ABSTRACT

Compost application is a widely recommended agricultural practice to improve soil fertility. As almost all compost is likely polluted with plastic we hypothesize that compost application is a major input pathway for microplastics (MPs) into agricultural soil. To attribute the plastic load of soil to compost application, we investigated MPs in topsoil (0-30 cm) of a controlled, long-term fertilizer trial with application of compost made of municipal biowaste (0, 5, 10, and 20 t ha-1a-1), which ended 11 years ago. Microplastics were analyzed via density separation (ZnCl2) and light microscopy; testing this method recovered 92 ± 10 % of spiked plastic items. The fields of the long-term compost trial showed a MP load of 0-64 items kg-1, corresponding to MP stocks in the plough layer (0-30 cm) that ranged from 38.2 ± 55.5 million to 171.4 ± 57.5 million items ha-1. Microplastic stocks and contents increased with increasing amount of compost application. Thus, we confirm compost as a major input pathway for MPs into agricultural soil, with the effect still visible after 11 years. Comparison of calculated plastic input based on MP contents of recent German compost with MP loads found in soil revealed that overall compost application explained <6 % of total MP stocks. We assume that compost applied in earlier days contained higher plastic loads than recent ones, reflecting current awareness and successful efforts in reducing plastic loads during compost production. However, as the plots at the border of the field had up to 18 times higher MP loads than the inner plots of the trial, we suggest that littering also contributed significantly to MP pollution. Thus, even if given compost applications still add plastics to environment, other sources such as littering can already have become the dominating input pathway.


Subject(s)
Composting , Soil , Microplastics , Plastics , Fertilizers
5.
Sci Rep ; 12(1): 16329, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175535

ABSTRACT

Rice cultivation requires high amounts of phosphorus (P). However, significant amounts of P fertilizer additions may be retained by iron (Fe) oxides and are thus unavailable for plants. At the same time, rice cultivation has a high demand for silicic acid (Si), reducing Si availability after short duration of rice cultivation. By studying a paddy chronosequence with rice cultivation up to 2000 years, we show that Si limitation, observed as early as a few decades of rice cultivation, is limiting P availability along the paddy soils chronosequence. Using near edge X-ray absorption fine structure spectroscopy (NEXAFS) in a scanning transmission (soft) X-ray microscope (STXM) we show release of available P was linked to a Si-induced change in speciation of Fe-phases in soil particles and competition of Si with P for binding sites. Hence, low Si availability is limiting P availability in paddy soils. We propose that proper management of Si availability is a promising tool to improve the P supply of paddy plants.


Subject(s)
Oryza , Phosphorus , Fertilizers , Iron , Oxides , Silicic Acid , Silicon , Soil
6.
Biogeochemistry ; 158(1): 39-72, 2022.
Article in English | MEDLINE | ID: mdl-35221401

ABSTRACT

Sustainable forest management requires understanding of ecosystem phosphorus (P) cycling. Lang et al. (2017) [Biogeochemistry, https://doi.org/10.1007/s10533-017-0375-0] introduced the concept of P-acquiring vs. P-recycling nutrition strategies for European beech (Fagus sylvatica L.) forests on silicate parent material, and demonstrated a change from P-acquiring to P-recycling nutrition from P-rich to P-poor sites. The present study extends this silicate rock-based assessment to forest sites with soils formed from carbonate bedrock. For all sites, it presents a large set of general soil and bedrock chemistry data. It thoroughly describes the soil P status and generates a comprehensive concept on forest ecosystem P nutrition covering the majority of Central European forest soils. For this purpose, an Ecosystem P Nutrition Index (ENI P ) was developed, which enabled the comparison of forest P nutrition strategies at the carbonate sites in our study among each other and also with those of the silicate sites investigated by Lang et al. (2017). The P status of forest soils on carbonate substrates was characterized by low soil P stocks and a large fraction of organic Ca-bound P (probably largely Ca phytate) during early stages of pedogenesis. Soil P stocks, particularly those in the mineral soil and of inorganic P forms, including Al- and Fe-bound P, became more abundant with progressing pedogenesis and accumulation of carbonate rock dissolution residue. Phosphorus-rich impure, silicate-enriched carbonate bedrock promoted the accumulation of dissolution residue and supported larger soil P stocks, mainly bound to Fe and Al minerals. In carbonate-derived soils, only low P amounts were bioavailable during early stages of pedogenesis, and, similar to P-poor silicate sites, P nutrition of beech forests depended on tight (re)cycling of P bound in forest floor soil organic matter (SOM). In contrast to P-poor silicate sites, where the ecosystem P nutrition strategy is direct biotic recycling of SOM-bound organic P, recycling during early stages of pedogenesis on carbonate substrates also involves the dissolution of stable Ca-Porg precipitates formed from phosphate released during SOM decomposition. In contrast to silicate sites, progressing pedogenesis and accumulation of P-enriched carbonate bedrock dissolution residue at the carbonate sites promote again P-acquiring mechanisms for ecosystem P nutrition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10533-021-00884-7.

7.
Sci Total Environ ; 814: 152425, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34952071

ABSTRACT

Mycotoxins are secondary metabolites produced by specific fungi that have harmful effects on animals and humans. Worldwide more than 300 different mycotoxins are already known, frequently with concentrations in harvest products exceeding acceptable limits. Nevertheless, although these compounds have extensively been studied in food and feed, only little is known about their occurrence and fate in soil and agro-environmental matrices, such as manure, sewage sludge, drainage water and sediments. Therefore, the aim of this review was to (i) resume available methods for quantifying mycotoxins in soil, (ii) describe the occurrence and quantities of mycotoxins in soil and related agro-environmental matrices, and (iii) discuss the environmental fate of these target compounds with specific focus on their leaching potential into groundwater. The safest and most reliable method for mycotoxin quantification relies on mass spectrometry, while the extraction method and solvent composition differ depending on the compound under investigation. Mycotoxin levels detected in soils to date were in the µg range, reaching maximum amounts of 72.1 µg kg-1 for zearalenone, 32.1 µg kg-1 for deoxynivalenol, 23.7 µg kg-1 for ochratoxin A, 6.7 µg kg-1 for nivalenol, and 5.5 µg kg-1 for aflatoxin. Different compartments in the agroecosystem (cereals, corn, rice, water, manure, sewage sludge) each contained at least one mycotoxin. Mycotoxin retention in soils is controlled by texture, with significant adsorption of the compounds to clays but leaching potentials in sandy soils. We did not find any reports detecting mycotoxins in sediments, although there are increasing reports of mycotoxins in freshwater samples. Overall, it appears that soils and sediments are still underrepresented in research on potential environmental contamination with mycotoxins.


Subject(s)
Mycotoxins , Zearalenone , Animals , Edible Grain/chemistry , Food Contamination/analysis , Humans , Mycotoxins/analysis , Soil , Zearalenone/analysis
8.
Front Plant Sci ; 13: 1067498, 2022.
Article in English | MEDLINE | ID: mdl-36684760

ABSTRACT

Plant root traits play a crucial role in resource acquisition and crop performance when soil nutrient availability is low. However, the respective trait responses are complex, particularly at the field scale, and poorly understood due to difficulties in root phenotyping monitoring, inaccurate sampling, and environmental conditions. Here, we conducted a systematic review and meta-analysis of 50 field studies to identify the effects of nitrogen (N), phosphorous (P), or potassium (K) deficiencies on the root systems of common crops. Root length and biomass were generally reduced, while root length per shoot biomass was enhanced under N and P deficiency. Root length decreased by 9% under N deficiency and by 14% under P deficiency, while root biomass was reduced by 7% in N-deficient and by 25% in P-deficient soils. Root length per shoot biomass increased by 33% in N deficient and 51% in P deficient soils. The root-to-shoot ratio was often enhanced (44%) under N-poor conditions, but no consistent response of the root-to-shoot ratio to P-deficiency was found. Only a few K-deficiency studies suited our approach and, in those cases, no differences in morphological traits were reported. We encountered the following drawbacks when performing this analysis: limited number of root traits investigated at field scale, differences in the timing and severity of nutrient deficiencies, missing data (e.g., soil nutrient status and time of stress), and the impact of other conditions in the field. Nevertheless, our analysis indicates that, in general, nutrient deficiencies increased the root-length-to-shoot-biomass ratios of crops, with impacts decreasing in the order deficient P > deficient N > deficient K. Our review resolved inconsistencies that were often found in the individual field experiments, and led to a better understanding of the physiological mechanisms underlying root plasticity in fields with low nutrient availability.

9.
Glob Chang Biol ; 27(19): 4601-4614, 2021 10.
Article in English | MEDLINE | ID: mdl-34197679

ABSTRACT

Nature conservation and restoration in terrestrial ecosystems is often focused on increasing the numbers of megafauna, expecting them to have positive impacts on ecological self-regulation processes and biodiversity. In sub-Saharan Africa, conservation efforts also aspire to protect and enhance biodiversity with particular focus on elephants. However, elephant browsing carries the risk of woody biomass losses. In this context, little is known about how increasing elephant numbers affects carbon stocks in soils, including the subsoils. We hypothesized that (1) increasing numbers of elephants reduce tree biomass, and thus the amount of C stored therein, resulting (2) in a loss of soil organic carbon (SOC). If true, a negative carbon footprint could limit the sustainability of elephant conservation from a global carbon perspective. To test these hypotheses, we selected plots of low, medium, and high elephant densities in two national parks and adjacent conservancies in the Namibian component of the Kavango Zambezi Transfrontier Area (KAZA), and quantified carbon storage in both woody vegetation and soils (1 m). Analyses were supplemented by the assessment of soil carbon isotopic composition. We found that increasing elephant densities resulted in a loss of tree carbon storage by 6.4 t ha-1 . However, and in contrast to our second hypothesis, SOC stocks increased by 4.7 t ha-1 with increasing elephant densities. These higher SOC stocks were mainly found in the topsoil (0-30 cm) and were largely due to the formation of SOC from woody biomass. A second carbon input source into the soils was megaherbivore dung, which contributed with 0.02-0.323 t C ha-1  year-1 to ecosystem carbon storage in the low and high elephant density plots, respectively. Consequently, increasing elephant density does not necessarily lead to a negative C footprint, as soil carbon sequestration and transient C storage in dung almost compensate for losses in tree biomass.


Subject(s)
Elephants , Soil , Animals , Biomass , Carbon , Carbon Sequestration , Ecosystem
10.
PLoS One ; 16(6): e0252032, 2021.
Article in English | MEDLINE | ID: mdl-34077440

ABSTRACT

Bioturbation involves the incorporation of residues from the surface soil into the subsoil; however, common small soil 'bioengineers', such as earthworms or termites, are unlikely to transport human artifacts to deeper soil horizons. However, such artifacts occur in the deeper soil horizons within Amazonian Anthrosols (Terra Preta). Here we test the assumption that such tasks could be carried out by fly larvae, which could thus play a crucial role in waste decomposition and associated soil mixing under tropical conditions. We performed two greenhouse experiments with sandy substrate covered with layers of organic waste, ceramic fragments, and black soldier fly larvae (BSFL) (Hermetia illucens (L.) (Dipt.: Stratiomyidae)). We used in-situ images to assess the rate of bioturbation by BSFL, and then designed our main study to observe waste dissipation (reduction of organic carbon and phosphorus contents from waste model trials with and without charcoal) as related to larval-induced changes in soil properties. We found that the bioturbation of macroinvertebrates like BSFL was able to bury even large (> 5 cm) ceramic fragments within hours, which coincided with high soil growth rates (0.5 cm h-1). The sandy soil was subsequently heavily enriched with organic matter and phosphorus originating from organic waste. We conclude that BSFL, and possibly other fly species, are important, previously overlooked soil 'bioengineers', which may even contribute to the burial of artifacts in Anthrosols and other terrestrial waste dumps.


Subject(s)
Ceramics/chemistry , Composting/methods , Diptera/physiology , Larva/physiology , Soil/chemistry , Waste Management/methods , Animals , Humans
11.
New Phytol ; 230(5): 1883-1895, 2021 06.
Article in English | MEDLINE | ID: mdl-33638193

ABSTRACT

Understanding P uptake in soil-plant systems requires suitable P tracers. The stable oxygen isotope ratio in phosphate (expressed as δ18 OP ) is an alternative to radioactive labelling, but the degree to which plants preserve the δ18 OP value of the P source is unclear. We hypothesised that the source signal will be preserved in roots rather than shoots. In soil and hydroponic experiments with spring wheat (Triticum aestivum), we replaced irrigation water by 18 O-labelled water for up to 10 d. We extracted plant inorganic phosphates with trichloroacetic acid (TCA), assessed temporal dynamics of δ18 OTCA-P values after changing to 18 O-labelled water and combined the results with a mathematical model. Within 1 wk, full equilibration of δ18 OTCA-P values with the isotope value of the water in the growth medium occurred in shoots but not in roots. Model results further indicated that root δ18 OTCA-P values were affected by back transport of phosphate from shoots to roots, with a greater contribution of source P at higher temperatures when back transport was reduced. Root δ18 OTCA-P partially preserved the source signal, providing an indicator of P uptake sources. This now needs to be tested extensively for different species, soil and climate conditions to enable application in future ecosystem studies.


Subject(s)
Phosphorus , Triticum , Ecosystem , Models, Theoretical , Oxygen Isotopes/analysis , Plant Roots/chemistry , Soil
12.
Anal Chem ; 93(4): 2018-2025, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33393290

ABSTRACT

31P nuclear magnetic resonance (NMR) spectra can be biased due to the hydrolysis of labile P species during sample treatment and NMR analysis. This paper offers an approach to circumvent this problem by performing sample preparation and analysis in 18O-enriched medium. Heavy 18O isotope atoms were introduced into the resulting artificial hydrolysis products. The NMR signal of 18O-labeled P was shifted upfield relative to the unlabeled P nuclei in natural metabolites. This isotope shift enabled an immediate differentiation of artificial hydrolysis products from natural metabolites. Moreover, the hydrolysis products could be accurately quantified. Our data suggest that the extent to which artificial hydrolysis alters NMR spectra varies among different types of environmental samples. For instance, 72-84% of the detected monoesters in the organic soils of this study were actually artificially hydrolyzed diesters. By contrast, artificial hydrolysis products in the mineral soils used for this study accounted for less than 6% of the total monoesters. Polyphosphate was also hydrolyzed to yield 18O-labeled products in algal biomass.


Subject(s)
Isotope Labeling/methods , Magnetic Resonance Spectroscopy/methods , Oxygen Isotopes , Phosphorus Isotopes , Phosphorus/metabolism , Chlorella vulgaris/chemistry , Environmental Monitoring/methods , Environmental Pollutants , Phosphorus/chemistry , Soil/chemistry
13.
Front Microbiol ; 12: 794743, 2021.
Article in English | MEDLINE | ID: mdl-35197940

ABSTRACT

The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0-60 cm), (ii) intermediate zone B (60-220 cm), and (iii) deep zone C (220-340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota, Halobacterota, and Latescibacterota in zone A; Crenarchaeota, Fusobacteriota, and Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars.

14.
Sci Total Environ ; 760: 143335, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33199003

ABSTRACT

To maintain and improve soil fertility, compost application is a widely recommended practice. We hypothesized that this practice is, however, also a main entry path for plastic into soil. Hence, we i) quantified the prevalence of plastic in eight composts from different composting plants and hardware stores to derive estimations about related plastic inputs into soil, and ii) characterized the properties of these plastic residues in regard to size and shape for further risk assessment. Plastic remains were analyzed via density separation (ZnCl2) and light microscopy. Testing this method recovered 80 ± 29% of spiked plastic items. Applying this method revealed that all composts contained plastic particles in detectable amounts, with contents ranging from 12 ± 8 to 46 ± 8 particles kg-1, corresponding to calculated plastic weights of 0.05 ± 0.08 to 1.36 ± 0.59 g kg-1. Because of this high variability, an a-priori discrimination of plastic loads between compost types cannot be achieved. Upscaling these loads to common recommendations in composting practice, which range from 7 to 35 t compost ha-1, suggest that compost application to agricultural fields goes along with plastic loads of 84,000 to 1,610,000 plastic items ha-1 per year (a), respectively, amounting to 0.34 to 47.53 kg plastic ha-1 a-1. Large potential inputs should thus also occur for horticultural soils, where application rates of compost usually vary between 6.48 and 19.44 t ha-1, therewith resulting in a minimum plastic contamination of 77,770 plastic items and 0.31 kg plastic ha-1 a-1, but a maximum amount of up to 894,240 plastic items and 26.4 kg plastic ha-1 a-1. We conclude that compost application must be considered as potential source of plastic for both agricultural and horticultural soils, and technical solutions are needed to minimize these contamination risks while continuing this practice as important option to secure soil health.

15.
Sci Rep ; 10(1): 17140, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33051570

ABSTRACT

Information on the bioavailability and -accessibility of subsoil phosphorus (P) and how soil moisture affects its utilization by plants is scarce. The current study examined whether and to which degree wheat acquires P from subsoil allocated hydroxyapatite and how this could be affected by soil moisture. We investigated the 33P uptake by growing wheat in two rhizotron trials (soil and sand) with integrated 33P-labelled hydroxyapatite hotspots over a period of 44 days using digital autoradiography imaging and liquid scintillation counting. We applied two irrigation scenarios, mimicking either rainfall via topsoil watering or subsoil water storage. The plants showed similar biomass development when grown in soil, but a reduced growth in sand rhizotrons. Total plant P(tot) stocks were significantly larger in plants grown under improved subsoil moisture supply, further evidenced by enhanced P stocks in the ears of wheat in the sand treatment due to an earlier grain filling. This P uptake is accompanied by larger 33P signals, indicating that the plants accessed the hydroxyapatite because subsoil irrigation also promoted root proliferation within and around the hotspots. We conclude that even within a single season plants access subsoil mineral P sources, and this process is influenced by water management.

16.
Sci Rep ; 10(1): 14088, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839521

ABSTRACT

River deltas are frequently facing salinity intrusion, thus challenging agricultural production in these areas. One adaption strategy to increasing salinity is shrimp production, which however, heavily relies on antibiotic usage. This study was performed to evaluate the effect of increasing salinity on the dissipation rates of antibiotics in tropical flooded soil systems. For this purpose, paddy top soil from a coastal Vietnamese delta was spiked with selected frequently used antibiotics (sulfadiazine, sulfamethazine, sulfamethoxazole, trimethoprim) and incubated with flood water of different salt concentrations (0, 10, 20 g L-1). Antibiotic concentrations were monitored in water and soil phases over a period of 112 days using liquid chromatography and tandem mass spectrometry. We found that sulfamethazine was the most persistent antibiotic in the flooded soil system (DT50 = 77 days), followed by sulfadiazine (DT50 = 53 days), trimethoprim (DT50 = 3 days) and sulfamethoxazole (DT50 = 1 days). With the exception of sulfamethoxazole, the apparent distribution coefficient increased significantly (p < 0.05) for all antibiotics in course of the incubation, which indicates an accumulation of antibiotics in soil. On a whole system basis, including soil and water into the assessment, there was no overall salinity effect on the dissipation rates of antibiotics, suggesting that common e-fate models remain valid under varying salinity.


Subject(s)
Anti-Bacterial Agents/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Salinity , Soil Pollutants/analysis , Animals , Floods , Penaeidae/growth & development , Shellfish , Soil/chemistry , Sulfadiazine/analysis , Sulfamethazine/analysis , Sulfamethoxazole/analysis , Trimethoprim/analysis , Tropical Climate
17.
Sci Total Environ ; 703: 134758, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31767321

ABSTRACT

Saline water intrusion has become a severe threat in the coastal areas of Mekong delta of Vietnam, though offering farmers the option to diversify their land use, and switching, for instance, from permanent rice to alternating rice-shrimp systems or even to permanent shrimp systems. The objective of this study was to evaluate the respective impacts on soil salinity, nutrient status and their binding forms. Hence, we sampled the topsoils (cultivation layer, 0-15 cm) from 10 permanent rice systems and the rice platforms of 10 alternating riceshrimp systems. Furthermore, the sludges and the soils 10 cm underneath of the sludges from the ditches of the alternating rice-shrimp as well as from ponds of the permanent shrimp systems were sampled in Ben Tre and Sóc Trang provinces, Vietnam, respectively. The samples were analyzed regarding their electric conductivity, total and plant-available nutrient contents. To reveal possible changes in nutrient binding forms, sequential P and S extraction, 31P-nuclear magnetic resonance spectroscopy, and S and P X-ray absorption near edge structure spectroscopy were applied. The results showed that permanent and alternating shrimp cultivation lead to elevated salt concentrations but also improved the overall nutrient status relative to the permanent rice management and especially in the sludges relative to the soils underneath. The continued deposition of shrimp and feed debris promoted the accrual of stable, Ca- and Mg-associated P forms as well as of P-monoesters, whereas the S forms were depleted in thiophene S groups but enriched in sulfides relative to permanent rice fields. As effects by alternating rice-shrimp management were intermediate, this management has more potential to serve as a no-regret strategy for farmers to remain flexible in their response to climate changes and concurrent salinity intrusion relative to permanent shrimp production, which requires strict maintenance of adequate salinity levels also during the rainy season.


Subject(s)
Oryza , Animals , Crustacea , Nutrients , Seafood , Vietnam
19.
Glob Chang Biol ; 25(11): 3578-3590, 2019 11.
Article in English | MEDLINE | ID: mdl-31365780

ABSTRACT

Soil carbon transformation and sequestration have received significant interest in recent years due to a growing need for quantitating its role in mitigating climate change. Even though our understanding of the nature of soil organic matter has recently been substantially revised, fundamental uncertainty remains about the quantitative importance of microbial necromass as part of persistent organic matter. Addressing this uncertainty has been hampered by the absence of quantitative assessments whether microbial matter makes up the majority of the persistent carbon in soil. Direct quantitation of microbial necromass in soil is very challenging because of an overlapping molecular signature with nonmicrobial organic carbon. Here, we use a comprehensive analysis of existing biomarker amino sugar data published between 1996 and 2018, combined with novel appropriation using an ecological systems approach, elemental carbon-nitrogen stoichiometry, and biomarker scaling, to demonstrate a suit of strategies for quantitating the contribution of microbe-derived carbon to the topsoil organic carbon reservoir in global temperate agricultural, grassland, and forest ecosystems. We show that microbial necromass can make up more than half of soil organic carbon. Hence, we suggest that next-generation field management requires promoting microbial biomass formation and necromass preservation to maintain healthy soils, ecosystems, and climate. Our analyses have important implications for improving current climate and carbon models, and helping develop management practices and policies.


Subject(s)
Carbon , Soil , Biomass , Ecosystem , Nitrogen , Soil Microbiology
20.
Anal Chem ; 91(9): 6225-6232, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30932472

ABSTRACT

The stable 13C/12C isotope composition usually varies among different organic materials due to isotope fractionation during biochemical synthesis and degradation processes. Here, we introduce a novel laser ablation-isotope ratio mass spectrometry (LA-IRMS) methodology that allows highly resolved spatial analysis of carbon isotope signatures in solid samples down to a spatial resolution of 10 µm. The presented instrumental setup includes in-house-designed exchangeable ablation cells (3.8 and 0.4 mL, respectively) and an improved sample gas transfer, which allow accurate δ13C measurements of an acryl plate standard down to 0.6 and 0.4 ng of ablated carbon, respectively (standard deviation 0.25‰). Initial testing on plant and soil samples confirmed that microheterogeneity of their natural 13C/12C abundance can now be mapped at a spatial resolution down to 10 µm. The respective δ13C values in soils with C3/C4 crop sequence history varied by up to 14‰ across a distance of less than 100 µm in soil aggregates, while being partly sorted along rhizosphere gradients of <300 µm from Miscanthus plant roots into the surrounding soil. These very first demonstrations point to the appearance of very small metabolic hotspots originating from different natural isotope discrimination processes, now traceable via LA-IRMS.

SELECTION OF CITATIONS
SEARCH DETAIL
...