Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 453: 139653, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788645

ABSTRACT

Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) are two commonly used antioxidants with potential health risks associated with excessive intake from multiple sources. Several countries have implemented strict regulations to curb these risks. This study presents a simple LC-MS/MS method for estimating BHT and BHA levels in Salmo salar, butter, and milk. To mitigate any potential interference from the three complex matrices with the ionisation of the target analytes, the method utilised the standard addition approach. The mobile phase used to elute the analytes consisted of 0.1 % formic acid in a mixture of water and acetonitrile (25:75 v/v). Both antioxidants were detected in negative ionisation mode. BHT was identified through single-ion monitoring at a mass-to-charge ratio (m/z) of 219.4, while BHA was detected using multiple-reaction monitoring, with a transition from m/z 164.0 to 149.0. The environmental assessment of the applied procedures verified that the approach is eco-friendly.


Subject(s)
Butter , Butylated Hydroxyanisole , Butylated Hydroxytoluene , Food Contamination , Milk , Tandem Mass Spectrometry , Butylated Hydroxyanisole/analysis , Butylated Hydroxyanisole/chemistry , Butylated Hydroxytoluene/analysis , Butylated Hydroxytoluene/chemistry , Animals , Milk/chemistry , Food Contamination/analysis , Butter/analysis , Chromatography, High Pressure Liquid , Salmon , Cattle , Chromatography, Liquid , Antioxidants/chemistry , Antioxidants/analysis , Trout/metabolism
2.
Sci Rep ; 14(1): 4498, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402246

ABSTRACT

Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) are two antioxidants that have been extensively used in many applications. Both are well known for their debatable health risks due to their multiple intake sources. Therefore, conservative limits are set for them in different regulations adapted to the matrices in which they exist. Here we present a simple spectrofluorimetric method for the determination of BHT and BHA based on their native fluorescence and synchronous scanning mode. The type of solvent and the interval between emission and excitation wavelengths were carefully optimized. Under the optimized conditions, good linearities were obtained between the emission intensity and the corresponding concentrations of BHT and BHA over the range of 3-18 µg/mL and 0.1-7 µg/mL, respectively with a good correlation coefficient (r > 0.99). The limits of detection were 0.9 and 0.02 µg/mL, and the quantification limits were 3 and 0.05 µg/mL for BHT and BHA, respectively. The suggested procedure was validated according to ICH guidelines Q2 (R1). Furthermore, the method's greenness was assessed by three different methods, and it proved to be eco-reasonable. The method was successfully applied to the determination of BHT and BHA in pharmaceutical formulations. We also applied the suggested method for monitoring the residual BHA in conventional, powdered milk and butter, with good recovery in spiked samples.


Subject(s)
Butylated Hydroxyanisole , Butylated Hydroxytoluene , Animals , Butylated Hydroxyanisole/analysis , Milk/chemistry , Butter/analysis , Spectrometry, Fluorescence , Antioxidants/analysis
3.
BMC Chem ; 18(1): 20, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38281043

ABSTRACT

High performance liquid chromatography is one of the techniques of choice for the separation and quantitative determination of drugs in mixture form. Ipriflavone, ascorbic acid, pyridoxine, vitamin D3, and lysine are formulated together as an adjuvant combination in osteoporosis. In this work, we developed and validated two complementary high performance liquid chromatographic methods to determine the five compounds in their pharmaceutical dosage form. The first method (method A) was capable of determining ipriflavone, ascorbic acid, pyridoxine, and vitamin D3 in their bulk and combined pharmaceutical formulation. The method is based on Liquid Chromatographic separation with UV detection at 254 nm using Agilent Eclipse XDB-C18 column with a mobile phase consisting of 25 mM ammonium acetate buffer (pH 4.2): methanol in gradient mode. Due to the high polarity of lysine, it was difficult to achieve satisfactory retention on reversed phase columns. So, we separated it on a strong cation exchange column (Exsil 100 SCX) without derivatization with a mobile phase consisting of 10 mM sodium dihydrogen phosphate and 200 mM sodium chloride (pH 6) with UV detection at 210 nm (method B). Validation of the proposed methods was performed according to ICH guidelines Q2(R1). The proposed methods proved to be valid for selective analysis of the stated drugs in their bulk and combined pharmaceutical formulation. Greenness assessment of the developed methods was evaluated using three assessment tools: ESA, GAPI and the most recently developed tool AGREE, showing a satisfactory comprehensive guide of the greenness of the developed methods.

4.
Luminescence ; 34(1): 64-69, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30537239

ABSTRACT

A spectrofluorimetric method for the determination of eptifibatide is presented based on its native fluorescence. The type of solvent and the wavelength of maximum excitation and emission were carefully selected to optimize the experimental conditions. Under the specified experimental conditions, the linearities obtained between the emission intensity and the corresponding concentrations of eptifibatide were in the range 0.1-2.5 µg/ml for the calibration curve constructed for direct determination of eptifibatide in dosage form and 0.05-2.2 µg/ml for the calibration curve constructed in spiked human plasma with a good correlation coefficient (r > 0.99). The lower limit of quantification for the calibration curve constructed in human plasma was 0.05 µg/ml. Recovery results for eptifibatide in spiked plasma samples and in dosage form, represented as mean ± % RSD, were 95.17 ± 1.94 and 100.29 ± 1.33 respectively. The suggested procedures were validated according to the International Conference on Harmonization (ICH) guidelines for the direct determination of eptifibatide in its pure form and dosage form and United States Food and Drug Administration (US FDA) Guidance for Industry, Bioanalytical Method Validation for the assay of eptifibatide in human plasma.


Subject(s)
Eptifibatide/analysis , Spectrometry, Fluorescence/methods , Calibration , Drug Stability , Eptifibatide/blood , Humans , Limit of Detection , Platelet Aggregation Inhibitors/analysis , Platelet Aggregation Inhibitors/blood , Reproducibility of Results , Sensitivity and Specificity , Solvents/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL