Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(9): e1011472, 2023 09.
Article in English | MEDLINE | ID: mdl-37721939

ABSTRACT

There is a growing awareness that tumor-adjacent normal tissues used as control samples in cancer studies do not represent fully healthy tissues. Instead, they are intermediates between healthy tissues and tumors. The factors that contribute to the deviation of such control samples from healthy state include exposure to the tumor-promoting factors, tumor-related immune response, and other aspects of tumor microenvironment. Characterizing the relation between gene expression of tumor-adjacent control samples and tumors is fundamental for understanding roles of microenvironment in tumor initiation and progression, as well as for identification of diagnostic and prognostic biomarkers for cancers. To address the demand, we developed and validated TranNet, a computational approach that utilizes gene expression in matched control and tumor samples to study the relation between their gene expression profiles. TranNet infers a sparse weighted bipartite graph from gene expression profiles of matched control samples to tumors. The results allow us to identify predictors (potential regulators) of this transition. To our knowledge, TranNet is the first computational method to infer such dependencies. We applied TranNet to the data of several cancer types and their matched control samples from The Cancer Genome Atlas (TCGA). Many predictors identified by TranNet are genes associated with regulation by the tumor microenvironment as they are enriched in G-protein coupled receptor signaling, cell-to-cell communication, immune processes, and cell adhesion. Correspondingly, targets of inferred predictors are enriched in pathways related to tissue remodelling (including the epithelial-mesenchymal Transition (EMT)), immune response, and cell proliferation. This implies that the predictors are markers and potential stromal facilitators of tumor progression. Our results provide new insights into the relationships between tumor adjacent control sample, tumor and the tumor environment. Moreover, the set of predictors identified by TranNet will provide a valuable resource for future investigations.


Subject(s)
Neoplasms , Humans , Neoplasms/metabolism , Transcriptome , Cell Communication , Cell Transformation, Neoplastic , Tumor Microenvironment , Biomarkers, Tumor/genetics
2.
Genome Med ; 15(1): 15, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36879282

ABSTRACT

BACKGROUND: There has been a growing appreciation recently that mutagenic processes can be studied through the lenses of mutational signatures, which represent characteristic mutation patterns attributed to individual mutagens. However, the causal links between mutagens and observed mutation patterns as well as other types of interactions between mutagenic processes and molecular pathways are not fully understood, limiting the utility of mutational signatures. METHODS: To gain insights into these relationships, we developed a network-based method, named GENESIGNET that constructs an influence network among genes and mutational signatures. The approach leverages sparse partial correlation among other statistical techniques to uncover dominant influence relations between the activities of network nodes. RESULTS: Applying GENESIGNET to cancer data sets, we uncovered important relations between mutational signatures and several cellular processes that can shed light on cancer-related processes. Our results are consistent with previous findings, such as the impact of homologous recombination deficiency on clustered APOBEC mutations in breast cancer. The network identified by GENESIGNET also suggest an interaction between APOBEC hypermutation and activation of regulatory T Cells (Tregs), as well as a relation between APOBEC mutations and changes in DNA conformation. GENESIGNET also exposed a possible link between the SBS8 signature of unknown etiology and the Nucleotide Excision Repair (NER) pathway. CONCLUSIONS: GENESIGNET provides a new and powerful method to reveal the relation between mutational signatures and gene expression. The GENESIGNET method was implemented in python, and installable package, source codes and the data sets used for and generated during this study are available at the Github site https://github.com/ncbi/GeneSigNet.


Subject(s)
Biological Phenomena , Breast Neoplasms , Humans , Female , Mutation , Mutagens , Breast Neoplasms/genetics , Cell Nucleus
3.
bioRxiv ; 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36945455

ABSTRACT

There is a growing awareness that tumor-adjacent normal tissues used as control samples in cancer studies do not represent fully healthy tissues. Instead, they are intermediates between healthy tissues and tumors. The factors that contribute to the deviation of such control samples from healthy state include exposure to the tumor-promoting factors, tumor-related immune response, and other aspects of tumor microenvironment. Characterizing the relation between gene expression of tumor-adjacent control samples and tumors is fundamental for understanding roles of microenvironment in tumor initiation and progression, as well as for identification of diagnostic and prognostic biomarkers for cancers. To address the demand, we developed and validated TranNet, a computational approach that utilizes gene expression in matched control and tumor samples to study the relation between their gene expression profiles. TranNet infers a sparse weighted bipartite graph from gene expression profiles of matched control samples to tumors. The results allow us to identify predictors (potential regulators) of this transition. To our knowledge, TranNet is the first computational method to infer such regulation. We applied TranNet to the data of several cancer types and their matched control samples from The Cancer Genome Atlas (TCGA). Many predictors identified by TranNet are genes associated with regulation by the tumor microenvironment as they are enriched in G-protein coupled receptor signaling, cell-to-cell communication, immune processes, and cell adhesion. Correspondingly, targets of inferred predictors are enriched in pathways related to tissue remodelling (including the epithelial-mesenchymal Transition (EMT)), immune response, and cell proliferation. This implies that the predictors are markers and potential stromal facilitators of tumor progression. Our results provide new insights for the relationships between tumor adjacent control sample, tumor and the tumor environment. Moreover, the set of predictors identified by TranNet will provide a valuable resource for future investigations. The TranNet method was implemented in python, source codes and the data sets used for and generated during this study are available at the Github site https://github.com/ncbi/TranNet .

4.
Biomolecules ; 12(10)2022 09 27.
Article in English | MEDLINE | ID: mdl-36291592

ABSTRACT

Smoking is a widely recognized risk factor in the emergence of cancers and other lung diseases. Studies of non-cancer lung diseases typically investigate the role that smoking has in chronic changes in lungs that might predispose patients to the diseases, whereas most cancer studies focus on the mutagenic properties of smoking. Large-scale cancer analysis efforts have collected expression data from both tumor and control lung tissues, and studies have used control samples to estimate the impact of smoking on gene expression. However, such analyses may be confounded by tumor-related micro-environments as well as patient-specific exposure to smoking. Thus, in this paper, we explore the utilization of mutational signatures to study environment-induced changes of gene expression in control lung tissues from lung adenocarcinoma samples. We show that a joint computational analysis of mutational signatures derived from sequenced tumor samples, and the gene expression obtained from control samples, can shed light on the combined impact that smoking and tumor-related micro-environments have on gene expression and cell-type composition in non-neoplastic (control) lung tissue. The results obtained through such analysis are both supported by experimental studies, including studies utilizing single-cell technology, and also suggest additional novel insights. We argue that the study provides a proof of principle of the utility of mutational signatures to be used as sensors of environmental exposures not only in the context of the mutational landscape of cancer, but also as a reference for changes in non-cancer lung tissues. It also provides an example of how a database collected with the purpose of understanding cancer can provide valuable information for studies not directly related to the disease.


Subject(s)
Lung Diseases , Lung Neoplasms , Neoplasms , Humans , Mutation , Neoplasms/genetics , Smoking/adverse effects , Smoking/genetics , Lung , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Tumor Microenvironment/genetics
5.
Cell Syst ; 12(10): 994-1003.e4, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34375586

ABSTRACT

Cancer genomes accumulate a large number of somatic mutations resulting from a combination of stochastic errors in DNA processing, cancer-related aberrations of the DNA repair machinery, or carcinogenic exposures; each mutagenic process leaves a characteristic mutational signature. A key challenge is understanding the interactions between signatures, particularly as DNA repair deficiencies often modify the effects of other mutagens. Here, we introduce RepairSig, a computational method that explicitly models additive primary mutagenic processes; non-additive secondary processes, which interact with the primary processes; and a mutation opportunity, that is, the distribution of sites across the genome that are vulnerable to damage or preferentially repaired. We demonstrate that RepairSig accurately recapitulates experimentally identified signatures, identifies autonomous signatures of deficient DNA repair processes, and explains mismatch repair deficiency in breast cancer by de novo inference of both primary and secondary signatures from patient data. RepairSig is freely available for download at https://github.com/ncbi/RepairSig.


Subject(s)
Breast Neoplasms , DNA Damage , Breast Neoplasms/genetics , DNA , DNA Damage/genetics , DNA Repair/genetics , Female , Humans , Mutation/genetics
6.
Bioinformatics ; 31(15): 2452-60, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25819079

ABSTRACT

MOTIVATION: The generation of a large volume of cancer genomes has allowed us to identify disease-related alterations more accurately, which is expected to enhance our understanding regarding the mechanism of cancer development. With genomic alterations detected, one challenge is to pinpoint cancer-driver genes that cause functional abnormalities. RESULTS: Here, we propose a method for uncovering the dominant effects of cancer-driver genes (DEOD) based on a partial covariance selection approach. Inspired by a convex optimization technique, it estimates the dominant effects of candidate cancer-driver genes on the expression level changes of their target genes. It constructs a gene network as a directed-weighted graph by integrating DNA copy numbers, single nucleotide mutations and gene expressions from matched tumor samples, and estimates partial covariances between driver genes and their target genes. Then, a scoring function to measure the cancer-driver score for each gene is applied. To test the performance of DEOD, a novel scheme is designed for simulating conditional multivariate normal variables (targets and free genes) given a group of variables (driver genes). When we applied the DEOD method to both the simulated data and breast cancer data, DEOD successfully uncovered driver variables in the simulation data, and identified well-known oncogenes in breast cancer. In addition, two highly ranked genes by DEOD were related to survival time. The copy number amplifications of MYC (8q24.21) and TRPS1 (8q23.3) were closely related to the survival time with P-values = 0.00246 and 0.00092, respectively. The results demonstrate that DEOD can efficiently uncover cancer-driver genes.


Subject(s)
Genes, Dominant , Genes, Neoplasm , Genomics/methods , Models, Statistical , Breast Neoplasms/genetics , Breast Neoplasms/mortality , DNA-Binding Proteins , Female , Gene Dosage , Gene Expression , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genes, myc , Humans , Mutation , Oncogenes , Repressor Proteins , Survival Analysis , Transcription Factors
7.
PLoS One ; 9(8): e104993, 2014.
Article in English | MEDLINE | ID: mdl-25148538

ABSTRACT

Sub-networks can expose complex patterns in an entire bio-molecular network by extracting interactions that depend on temporal or condition-specific contexts. When genes interact with each other during cellular processes, they may form differential co-expression patterns with other genes across different cell states. The identification of condition-specific sub-networks is of great importance in investigating how a living cell adapts to environmental changes. In this work, we propose the weighted MAXimum clique (WMAXC) method to identify a condition-specific sub-network. WMAXC first proposes scoring functions that jointly measure condition-specific changes to both individual genes and gene-gene co-expressions. It then employs a weaker formula of a general maximum clique problem and relates the maximum scored clique of a weighted graph to the optimization of a quadratic objective function under sparsity constraints. We combine a continuous genetic algorithm and a projection procedure to obtain a single optimal sub-network that maximizes the objective function (scoring function) over the standard simplex (sparsity constraints). We applied the WMAXC method to both simulated data and real data sets of ovarian and prostate cancer. Compared with previous methods, WMAXC selected a large fraction of cancer-related genes, which were enriched in cancer-related pathways. The results demonstrated that our method efficiently captured a subset of genes relevant under the investigated condition.


Subject(s)
Computational Biology/methods , Gene Expression Regulation , Gene Regulatory Networks , Algorithms , Datasets as Topic , Humans , Protein Interaction Mapping/methods , Protein Interaction Maps , Reproducibility of Results , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...