Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Immunol ; 212(9): 1442-1449, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38436421

ABSTRACT

Protein arginine methyltransferases (PRMTs) modify diverse protein targets and regulate numerous cellular processes; yet, their contributions to individual effector T cell responses during infections are incompletely understood. In this study, we identify PRMT5 as a critical regulator of CD4+ T follicular helper cell (Tfh) responses during influenza virus infection in mice. Conditional PRMT5 deletion in murine T cells results in an almost complete ablation of both Tfh and T follicular regulatory populations and, consequently, reduced B cell activation and influenza-specific Ab production. Supporting a potential mechanism, we observe elevated surface expression of IL-2Rα on non-T regulatory effector PRMT5-deficient T cells. Notably, IL-2 signaling is known to negatively impact Tfh differentiation. Collectively, our findings identify PRMT5 as a prominent regulator of Tfh programming, with potential causal links to IL-2 signaling.


Subject(s)
Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Animals , Humans , Mice , Cell Differentiation , Germinal Center , Interleukin-2/metabolism , Orthomyxoviridae Infections/metabolism , T Follicular Helper Cells
3.
Brain Behav Immun ; 109: 235-250, 2023 03.
Article in English | MEDLINE | ID: mdl-36764399

ABSTRACT

We have previously shown that short-term (3-day) high fat diet (HFD) consumption induces a neuroinflammatory response and subsequent impairment of long-term memory in aged, but not young adult, male rats. However, the immune cell phenotypes driving this proinflammatory response are not well understood. Previously, we showed that microglia isolated from young and aged rats fed a HFD express similar levels of priming and proinflammatory transcripts, suggesting that additional factors may drive the exaggerated neuroinflammatory response selectively observed in aged HFD-fed rats. It is established that T cells infiltrate both the young and especially the aged central nervous system (CNS) and contribute to immune surveillance of the parenchyma. Thus, we investigated the modulating role of short-term HFD on T cell presence in the CNS in aged rats using bulk RNA sequencing and flow cytometry. RNA sequencing results indicate that aging and HFD altered the expression of genes and signaling pathways associated with T cell signaling, immune cell trafficking, and neuroinflammation. Moreover, flow cytometry data showed that aging alone increased CD4+ and CD8+ T cell presence in the brain and that CD8+, but not CD4+, T cells were further increased in aged rats fed a HFD. Based on these data, we selectively depleted circulating CD8+ T cells via an intravenous injection of an anti-CD8 antibody in aged rats prior to 3 days of HFD to infer the functional role these cells may be playing in long-term memory and neuroinflammation. Results indicate that peripheral depletion of CD8+ T cells lowered hippocampal cytokine levels and prevented the HFD-induced i) increase in brain CD8+ T cells, ii) memory impairment, and iii) alterations in pre- and post-synaptic structures in the hippocampus and amygdala. Together, these data indicate a substantial role for CD8+ T cells in mediating diet-induced memory impairments in aged male rats.


Subject(s)
CD8-Positive T-Lymphocytes , Neuroinflammatory Diseases , Rats , Male , Animals , CD8-Positive T-Lymphocytes/metabolism , Memory Disorders/metabolism , Memory, Long-Term/physiology , Diet, High-Fat/adverse effects , Hippocampus/metabolism
4.
J Immunol ; 208(7): 1525-1533, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35288471

ABSTRACT

Severe asthma is characterized by steroid insensitivity and poor symptom control and is responsible for most asthma-related hospital costs. Therapeutic options remain limited, in part due to limited understanding of mechanisms driving severe asthma. Increased arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is increased in human asthmatic lungs. In this study, we show that PRMT5 drives allergic airway inflammation in a mouse model reproducing multiple aspects of human severe asthma. We find that PRMT5 is required in CD4+ T cells for chronic steroid-insensitive severe lung inflammation, with selective T cell deletion of PRMT5 robustly suppressing eosinophilic and neutrophilic lung inflammation, pathology, airway remodeling, and hyperresponsiveness. Mechanistically, we observed high pulmonary sterol metabolic activity, retinoic acid-related orphan receptor γt (RORγt), and Th17 responses, with PRMT5-dependent increases in RORγt's agonist desmosterol. Our work demonstrates that T cell PRMT5 drives severe allergic lung inflammation and has potential implications for the pathogenesis and therapeutic targeting of severe asthma.


Subject(s)
Asthma , Hypersensitivity , Animals , Asthma/metabolism , Granulocytes/metabolism , Hypersensitivity/metabolism , Inflammation/metabolism , Mice , Th17 Cells/metabolism
5.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1194-L1205, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34755542

ABSTRACT

Corticosteroid insensitivity in asthma limits the ability to effectively manage severe asthma, which is characterized by persistent airway inflammation, airway hyperresponsiveness (AHR), and airflow obstruction despite corticosteroid treatment. Recent reports indicate that corticosteroid insensitivity is associated with increased interferon-γ (IFN-γ) levels and T-helper (Th) 1 lymphocyte infiltration in severe asthma. Signal transducer and activator of transcription 1 (STAT1) activation by IFN-γ is a key signaling pathway in Th1 inflammation; however, its role in the context of severe allergic airway inflammation and corticosteroid sensitivity remains unclear. In this study, we challenged wild-type (WT) and Stat1-/- mice with mixed allergens (MA) augmented with c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate], an inducer of Th1 cell infiltration with increased eosinophils, neutrophils, Th1, Th2, and Th17 cells. Compared with WT mice, Stat1-/- had reduced neutrophils, Th1, and Th17 cell infiltration. To evaluate corticosteroid sensitivity, mice were treated with either vehicle, 1 or 3 mg/kg fluticasone propionate (FP). Corticosteroids significantly reduced eosinophil infiltration and cytokine levels in both c-di-GMP + MA-challenged WT and Stat1-/- mice. However, histological and functional analyses show that corticosteroids did not reduce airway inflammation, epithelial mucous cell abundance, airway smooth muscle mass, and AHR in c-di-GMP + MA-challenged WT or Stat1-/- mice. Collectively, our data suggest that increased Th1 inflammation is associated with a decrease in corticosteroid sensitivity. However, increased airway pathology and AHR persist in the absence of STAT1 indicate corticosteroid insensitivity in structural airway cells is a STAT1 independent process.


Subject(s)
Adrenal Cortex Hormones/metabolism , Inflammation/metabolism , STAT1 Transcription Factor/metabolism , Allergens/metabolism , Animals , Asthma/metabolism , Eosinophils/metabolism , Female , Hypersensitivity/metabolism , Interferon-gamma/metabolism , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Respiratory Hypersensitivity/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
6.
Front Immunol ; 12: 695947, 2021.
Article in English | MEDLINE | ID: mdl-34168658

ABSTRACT

Multiple Sclerosis (MS) is a debilitating central nervous system disorder associated with inflammatory T cells. Activation and expansion of inflammatory T cells is thought to be behind MS relapses and influence disease severity. Protein arginine N-methyltransferase 5 (PRMT5) is a T cell activation-induced enzyme that symmetrically dimethylates proteins and promotes T cell proliferation. However, the mechanism behind PRMT5-mediated control of T cell proliferation and whether PRMT5 contributes to diseases severity is unclear. Here, we evaluated the role of PRMT5 on cyclin/cdk pairs and cell cycle progression, as well as PRMT5's link to disease severity in an animal model of relapsing-remitting MS. Treatment of T helper 1 (mTh1) cells with the selective PRMT5 inhibitor, HLCL65, arrested activation-induced T cell proliferation at the G1 stage of the cell cycle, suggesting PRMT5 promotes cell cycle progression in CD4+ T cells. The Cyclin E1/Cdk2 pair promoting G1/S progression was also decreased after PRMT5 inhibition, as was the phosphorylation of retinoblastoma. In the SJL mouse relapsing-remitting model of MS, the highest PRMT5 expression in central nervous system-infiltrating cells corresponded to peak and relapse timepoints. PRMT5 expression also positively correlated with increasing CD4 Th cell composition, disease severity and Cyclin E1 expression. These data indicate that PRMT5 promotes G1/S cell cycle progression and suggest that this effect influences disease severity and/or progression in the animal model of MS. Modulating PRMT5 levels may be useful for controlling T cell expansion in T cell-mediated diseases including MS.


Subject(s)
Cell Cycle , Cell Proliferation , Cyclin E/metabolism , Encephalomyelitis, Autoimmune, Experimental/enzymology , Multiple Sclerosis, Relapsing-Remitting/enzymology , Oncogene Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Th1 Cells/enzymology , Animals , Cyclin-Dependent Kinase 2/metabolism , Disease Progression , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Genes, T-Cell Receptor , Mice, Transgenic , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/pathology , Phosphorylation , Retinoblastoma Protein/metabolism , Severity of Illness Index , Signal Transduction , Th1 Cells/immunology , Th1 Cells/pathology
7.
J Clin Invest ; 130(4): 1683-1698, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32091410

ABSTRACT

Protein arginine methyltransferase 5 (PRMT5) catalyzes symmetric dimethylation (SDM) of arginine, a posttranslational modification involved in oncogenesis and embryonic development. However, the role and mechanisms by which PRMT5 modulates Th cell polarization and autoimmune disease have not yet been elucidated. Here, we found that PRMT5 promoted SREBP1 SDM and the induction of cholesterol biosynthetic pathway enzymes that produce retinoid-related orphan receptor (ROR) agonists that activate RORγt. Specific loss of PRMT5 in the CD4+ Th cell compartment suppressed Th17 differentiation and protected mice from developing experimental autoimmune encephalomyelitis (EAE). We also found that PRMT5 controlled thymic and peripheral homeostasis in the CD4+ Th cell life cycle and invariant NK (iNK) T cell development and CD8+ T cell maintenance. This work demonstrates that PRMT5 expression in recently activated T cells is necessary for the cholesterol biosynthesis metabolic gene expression program that generates RORγt agonistic activity and promotes Th17 differentiation and EAE. These results point to Th PRMT5 and its downstream cholesterol biosynthesis pathway as promising therapeutic targets in Th17-mediated diseases.


Subject(s)
Autoimmunity , Cell Differentiation/immunology , Cholesterol/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Protein-Arginine N-Methyltransferases/immunology , Th17 Cells/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Differentiation/genetics , Cholesterol/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Mice, Transgenic , Natural Killer T-Cells/immunology , Natural Killer T-Cells/pathology , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Protein-Arginine N-Methyltransferases/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/immunology , Th17 Cells/pathology
8.
Front Immunol ; 10: 524, 2019.
Article in English | MEDLINE | ID: mdl-30941147

ABSTRACT

Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) mediated by CD4+ T cells and modeled via experimental autoimmune encephalomyelitis (EAE). Inhibition of PRMT5, the major Type II arginine methyltransferase, suppresses pathogenic T cell responses and EAE. PRMT5 is transiently induced in proliferating memory inflammatory Th1 cells and during EAE. However, the mechanisms driving PRMT5 protein induction and repression as T cells expand and return to resting is currently unknown. Here, we used naive mouse and memory mouse and human Th1/Th2 cells as models to identify mechanisms controlling PRMT5 protein expression in initial and recall T cell activation. Initial activation of naive mouse T cells resulted in NF-κB-dependent transient Prmt5 transcription and NF-κB, mTOR and MYC-dependent PRMT5 protein induction. In murine memory Th cells, transcription and miRNA loss supported PRMT5 induction to a lesser extent than in naive T cells. In contrast, NF-κB/MYC/mTOR-dependent non-transcriptional PRMT5 induction played a major role. These results highlight the importance of the NF-κB/mTOR/MYC axis in PRMT5-driven pathogenic T cell expansion and may guide targeted therapeutic strategies for MS.


Subject(s)
Lymphocyte Activation/genetics , NF-kappa B/genetics , Protein-Arginine N-Methyltransferases/genetics , Proto-Oncogene Proteins c-myc/genetics , TOR Serine-Threonine Kinases/genetics , Transcription, Genetic/genetics , Animals , Cell Line , Encephalomyelitis, Autoimmune, Experimental/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Sclerosis/genetics , Th1 Cells/physiology , Th2 Cells/physiology
9.
Front Immunol ; 9: 1593, 2018.
Article in English | MEDLINE | ID: mdl-30042766

ABSTRACT

Macrophages and their monocyte precursors mediate innate immune responses and can promote a spectrum of phenotypes from pro-inflammatory to pro-resolving. Currently, there are few markers that allow for robust dissection of macrophage phenotype. We recently identified CD38 as a marker of inflammatory macrophages in murine in vitro and in vivo models. However, it is unknown whether CD38 plays a similar marker and/or functional role in human macrophages and inflammatory diseases. Here, we establish that CD38 transcript and protein are robustly induced in human macrophages exposed to LPS (±IFN-γ) inflammatory stimuli, but not with the alternative stimulus, IL-4. Pharmacologic and/or genetic CD38 loss-of-function significantly reduced the secretion of inflammatory cytokines IL-6 and IL-12p40 and glycolytic activity in human primary macrophages. Finally, monocyte analyses in systemic lupus erythematosus patients revealed that, while all monocytes express CD38, high CD38 expression in the non-classical monocyte subpopulation is associated with disease. These data are consistent with an inflammatory marker role for CD38 in human macrophages and monocytes.

10.
Sci Rep ; 8(1): 723, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335509

ABSTRACT

Interleukin 1 is a pleiotropic cytokine that mediates diverse functions through its receptor, type I interleukin 1 receptor (IL-1R1). Most previous studies have focused on the expression and function of IL-1R1 in immune cells. Here we performed a comprehensive mapping of IL-1R1 distribution in multiple peripheral tissues using our IL-1R1 reporter (IL-1R1GR/GR) mice. This method yielded the highest sensitivity of in situ detection of IL-1R1 mRNA and protein. Besides validating previously reported IL-1R1 expression in the endocrine tissues including pituitary and pancreas, our results refuted previously reported exclusive IL-1R1 expression in neurons of the spinal cord dorsal horn and dorsal root ganglia (DRG). Instead, IL-1R1 expression was detected in endothelial cells within DRG, spinal cord, pancreas, colon, muscles and many immune organs. In addition, gp38+ fibroblastic reticular cells (FRCs), rather than tissue macrophages or other immune cells, were found to express high levels of IL-1R1 in colon and many immune organs. A functional test of spleen FRCs showed that they responded rapidly to systemic IL-1ß stimulation in vivo. Taken together, this study provides a rigorous re-examination of IL-1R1 expression in peripheral tissues and reveals tissue FRCs as a previously unappreciated novel high IL-1R1-expressing cell type in peripheral IL-1 signaling.


Subject(s)
Animal Structures/chemistry , Animal Structures/physiology , Gene Expression Profiling , Receptors, Interleukin-1/biosynthesis , Animals , Mice , Receptors, Interleukin-1/analysis , Receptors, Interleukin-1/genetics
11.
Front Immunol ; 8: 1520, 2017.
Article in English | MEDLINE | ID: mdl-29176977

ABSTRACT

Macrophages and microglia play crucial roles during central nervous system development, homeostasis and acute events such as infection or injury. The diverse functions of tissue macrophages and microglia are mirrored by equally diverse phenotypes. A model of inflammatory/M1 versus a resolution phase/M2 macrophages has been widely used. However, the complexity of macrophage function can only be achieved by the existence of varied, plastic and tridimensional macrophage phenotypes. Understanding how tissue macrophages integrate environmental signals via molecular programs to define pathogen/injury inflammatory responses provides an opportunity to better understand the multilayered nature of macrophages, as well as target and modulate cellular programs to control excessive inflammation. This is particularly important in MS and other neuroinflammatory diseases, where chronic inflammatory macrophage and microglial responses may contribute to pathology. Here, we perform a comprehensive review of our current understanding of how molecular pathways modulate tissue macrophage phenotype, covering both classic pathways and the emerging role of microRNAs, receptor-tyrosine kinases and metabolism in macrophage phenotype. In addition, we discuss pathway parallels in microglia, novel markers helpful in the identification of peripheral macrophages versus microglia and markers linked to their phenotype.

13.
J Immunol ; 198(4): 1439-1451, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28087667

ABSTRACT

In the autoimmune disease multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), expansion of pathogenic, myelin-specific Th1 cell populations drives active disease; selectively targeting this process may be the basis for a new therapeutic approach. Previous studies have hinted at a role for protein arginine methylation in immune responses, including T cell-mediated autoimmunity and EAE. However, a conclusive role for the protein arginine methyltransferase (PRMT) enzymes that catalyze these reactions has been lacking. PRMT5 is the main PRMT responsible for symmetric dimethylation of arginine residues of histones and other proteins. PRMT5 drives embryonic development and cancer, but its role in T cells, if any, has not been investigated. In this article, we show that PRMT5 is an important modulator of CD4+ T cell expansion. PRMT5 was transiently upregulated during maximal proliferation of mouse and human memory Th cells. PRMT5 expression was regulated upstream by the NF-κB pathway, and it promoted IL-2 production and proliferation. Blocking PRMT5 with novel, highly selective small molecule PRMT5 inhibitors severely blunted memory Th expansion, with preferential suppression of Th1 cells over Th2 cells. In vivo, PRMT5 blockade efficiently suppressed recall T cell responses and reduced inflammation in delayed-type hypersensitivity and clinical disease in EAE mouse models. These data implicate PRMT5 in the regulation of adaptive memory Th cell responses and suggest that PRMT5 inhibitors may be a novel therapeutic approach for T cell-mediated inflammatory disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Immunologic Memory , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/physiology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cytokines/immunology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/metabolism , Gene Expression Regulation , Humans , Inflammation , Interleukin-2/biosynthesis , Interleukin-2/immunology , Lymphocyte Activation , Methylation , Mice , NF-kappa B/immunology , Protein-Arginine N-Methyltransferases/genetics , Th1 Cells/immunology , Th2 Cells/immunology , Up-Regulation
14.
Sci Rep ; 7: 40814, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28094319

ABSTRACT

Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity on the Experimental Autoimmune Encephalomyelitis (EAE). Our data show two distinct populations of AAMϕs, based on the expression of PD-L1 and PD-L2 molecules, resulting upon T. crassiceps infection. Adoptive transfer of Ly6C+ monocytes gave rise to PD-L1+/PD-L2+, but not PD-L1+/PD-L2- cells in T. crassiceps-infected mice, demonstrating that the PD-L1+/PD-L2+ subpopulation of AAMϕs originates from blood monocytes. Furthermore, adoptive transfer of PD-L1+/PD-L2+ AAMϕs into EAE induced mice reduced disease incidence, delayed disease onset, and diminished the clinical disability, indicating the critical role of these cells in the regulation of autoimmune disorders.


Subject(s)
Adoptive Transfer/methods , Antigens, Ly/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Macrophage Activation , Monocyte-Macrophage Precursor Cells/immunology , Taenia/immunology , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/therapy , Female , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Ligand 2 Protein/genetics , Programmed Cell Death 1 Ligand 2 Protein/metabolism
15.
Clin Immunol ; 176: 12-22, 2017 03.
Article in English | MEDLINE | ID: mdl-28039018

ABSTRACT

Recent studies implicate innate immunity to systemic lupus erythematosus (SLE) pathogenesis. Toll-like receptor (TLR)8 is estrogen-regulated and binds viral ssRNA to stimulate innate immune responses, but recent work indicates that microRNA (miR)-21 within extracellular vesicles (EVs) can also trigger this receptor. Our objective was to examine TLR8 expression/activation to better understand sex-biased responses involving TLR8 in SLE. Our data identify an estrogen response element that promotes STAT1 expression and demonstrate STAT1-dependent transcriptional activation of TLR8 with estrogen stimulation. In lieu of viral ssRNA activation, we explored EV-encapsulated miR-21 as an endogenous ligand and observed induction of both TLR8 and cytokine expression in vitro. Moreover, extracellular miR detection was found predominantly within EVs. Thus, just as a cytokine or chemokine, EV-encapsulated miR-21 can act as an inflammatory signaling molecule, or miRokine, by virtue of being an endogenous ligand of TLR8. Collectively, our data elucidates a novel innate inflammatory pathway in SLE.


Subject(s)
Estrogens/metabolism , Lupus Erythematosus, Systemic/metabolism , MicroRNAs/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction/physiology , Toll-Like Receptor 8/metabolism , Cell Line, Tumor , Chemokines/metabolism , Humans , Immunity, Innate/immunology , Inflammation/immunology , Inflammation/metabolism , Ligands , Lupus Erythematosus, Systemic/immunology , MCF-7 Cells
16.
PLoS One ; 11(7): e0159724, 2016.
Article in English | MEDLINE | ID: mdl-27447824

ABSTRACT

Inflammatory M1 spectrum macrophages protect from infection but can cause inflammatory disease and tissue damage, whereas alternatively activated/M2 spectrum macrophages reduce inflammation and promote tissue repair. Modulation of macrophage phenotype may be therapeutically beneficial and requires further understanding of the molecular programs that control macrophage differentiation. A potential mechanism by which macrophages differentiate may be through microRNA (miRNA), which bind to messenger RNA and post-transcriptionally modify gene expression, cell phenotype and function. We hypothesized that the inflammation-associated miRNA, miR-155, would be required for typical development of macrophage inflammatory state. miR-155 was rapidly up-regulated over 100-fold in inflammatory M1(LPS + IFN-γ), but not M2(IL-4), macrophages. Inflammatory genes Inos, Il1b and Tnfa and their corresponding protein or enzymatic products were reduced up to 72% in miR-155 knockout mouse M1(LPS + IFN-γ) macrophages, but miR-155 deficiency did not affect expression of the M2-associated gene Arg1 in M2(IL-4) macrophages. Additionally, a miR-155 oligonucleotide inhibitor efficiently suppressed Inos and Tnfa gene expression in wild-type M1(LPS + IFN-γ) macrophages. Comparative transcriptional profiling of unstimulated and M1(LPS + IFN-γ) macrophages derived from wild-type (WT) and miR-155 knockout (KO) mice revealed that half (approximately 650 genes) of the signature we previously identified in WT M1(LPS + IFN-γ) macrophages was dependent on miR-155. Real-Time PCR of independent datasets confirmed that miR-155 contributed to suppression of its validated mRNA targets Inpp5d, Tspan14, Ptprj and Mafb and induction of Inos, Il1b, Tnfa, Il6 and Il12. Overall, these data indicate that miR-155 plays an essential role in driving the inflammatory phenotype of M1(LPS+ IFN-γ) macrophages.


Subject(s)
Gene Expression Regulation , Inflammation/genetics , Macrophages/metabolism , MicroRNAs/genetics , Transcriptome , Animals , Biomarkers , Gene Expression Profiling , Gene Knockout Techniques , Inflammation/immunology , Inflammation/metabolism , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/immunology , Mice , Phenotype , RNA Interference , RNA, Messenger/genetics
17.
PLoS One ; 10(12): e0145342, 2015.
Article in English | MEDLINE | ID: mdl-26699615

ABSTRACT

Classically (M1) and alternatively activated (M2) macrophages exhibit distinct phenotypes and functions. It has been difficult to dissect macrophage phenotypes in vivo, where a spectrum of macrophage phenotypes exists, and also in vitro, where low or non-selective M2 marker protein expression is observed. To provide a foundation for the complexity of in vivo macrophage phenotypes, we performed a comprehensive analysis of the transcriptional signature of murine M0, M1 and M2 macrophages and identified genes common or exclusive to either subset. We validated by real-time PCR an M1-exclusive pattern of expression for CD38, G-protein coupled receptor 18 (Gpr18) and Formyl peptide receptor 2 (Fpr2) whereas Early growth response protein 2 (Egr2) and c-Myc were M2-exclusive. We further confirmed these data by flow cytometry and show that M1 and M2 macrophages can be distinguished by their relative expression of CD38 and Egr2. Egr2 labeled more M2 macrophages (~70%) than the canonical M2 macrophage marker Arginase-1, which labels 24% of M2 macrophages. Conversely, CD38 labeled most (71%) in vitro M1 macrophages. In vivo, a similar CD38+ population greatly increased after LPS exposure. Overall, this work defines exclusive and common M1 and M2 signatures and provides novel and improved tools to distinguish M1 and M2 murine macrophages.


Subject(s)
Biomarkers/metabolism , High-Throughput Nucleotide Sequencing/methods , Inflammation/metabolism , Macrophage Activation/physiology , Macrophages/metabolism , Transcriptome , Animals , Flow Cytometry , Immunoenzyme Techniques , Inflammation/chemically induced , Inflammation/genetics , Lipopolysaccharides/toxicity , Macrophages/cytology , Mice , Mice, Inbred C57BL , Phenotype , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
18.
J Biol Chem ; 287(27): 23119-27, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22593584

ABSTRACT

Nicotinic acetylcholine receptor (nAChR) cell surface expression levels are modulated during nicotine dependence and multiple disorders of the nervous system, but the mechanisms underlying nAChR trafficking remain unclear. To determine the role of cysteine residues, including their palmitoylation, on neuronal α4 nAChR subunit maturation and cell surface trafficking, the cysteines in the two intracellular regions of the receptor were replaced with serines using site-directed mutagenesis. Palmitoylation is a post-translational modification that regulates membrane receptor trafficking and function. Metabolic labeling with [(3)H]palmitate determined that the cysteine in the cytoplasmic loop between transmembrane domains 1 and 2 (M1-M2) is palmitoylated. When this cysteine is mutated to a serine, producing a depalmitoylated α4 nAChR, total protein expression decreases, but surface expression increases compared with wild-type α4 levels, as determined by Western blotting and enzyme-linked immunoassays, respectively. The cysteines in the M3-M4 cytoplasmic loop do not appear to be palmitoylated, but replacing all of the cysteines in the loop with serines increases total and cell surface expression. When all of the intracellular cysteines in both loops are mutated to serines, there is no change in total expression, but there is an increase in surface expression. Calcium accumulation assays and high affinity binding for [(3)H]epibatidine determined that all mutants retain functional activity. Thus, our results identify a novel palmitoylation site on cysteine 273 in the M1-M2 loop of the α4 nAChR and determine that cysteines in both intracellular loops are regulatory factors in total and cell surface protein expression of the α4ß2 nAChR.


Subject(s)
Lipoylation/physiology , Neurons/physiology , Protein Transport/physiology , Receptors, Nicotinic/metabolism , Animals , Calcium/metabolism , Coculture Techniques , Cysteine/genetics , Cytoplasm/metabolism , HEK293 Cells , Hippocampus/cytology , Humans , Neurons/cytology , Palmitates/metabolism , Palmitates/pharmacology , Primary Cell Culture , Protein Structure, Tertiary , Rats , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Tritium
19.
J Biol Chem ; 284(35): 23251-9, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19567877

ABSTRACT

The mechanisms involved in the targeting of neuronal nicotinic acetylcholine receptors (AChRs), critical for their functional organization at neuronal synapses, are not well understood. We have identified a novel functional association between alpha4beta2 AChRs and the presynaptic cell adhesion molecule, neurexin-1beta. In non-neuronal tsA 201 cells, recombinant neurexin-1beta and mature alpha4beta2 AChRs form complexes. alpha4beta2 AChRs and neurexin-1beta also coimmunoprecipitate from rat brain lysates. When exogenous alpha4beta2 AChRs and neurexin-1beta are coexpressed in hippocampal neurons, they are robustly targeted to hemi-synapses formed between these neurons and cocultured tsA 201 cells expressing neuroligin-1, a postsynaptic binding partner of neurexin-1beta. The extent of synaptic targeting is significantly reduced in similar experiments using a mutant neurexin-1beta lacking the extracellular domain. Additionally, when alpha4beta2 AChRs, alpha7 AChRs, and neurexin-1beta are coexpressed in the same neuron, only the alpha4beta2 AChR colocalizes with neurexin-1beta at presynaptic terminals. Collectively, these data suggest that neurexin-1beta targets alpha4beta2 AChRs to presynaptic terminals, which mature by trans-synaptic interactions between neurexins and neuroligins. Interestingly, human neurexin-1 gene dysfunctions have been implicated in nicotine dependence and in autism spectrum disorders. Our results provide novel insights as to possible mechanisms by which dysfunctional neurexins, through downstream effects on alpha4beta2 AChRs, may contribute to the etiology of these neurological disorders.


Subject(s)
Nerve Tissue Proteins/metabolism , Presynaptic Terminals/metabolism , Receptors, Nicotinic/metabolism , Animals , Cells, Cultured , Nerve Tissue Proteins/genetics , Neurons/metabolism , Protein Binding , Protein Transport , Rats , Receptors, Nicotinic/genetics
20.
J Neurosci Res ; 85(2): 238-49, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17131416

ABSTRACT

Peripheral myelin protein 22 (PMP22) is a tetraspan glycoprotein whose misexpression is associated with a family of hereditary peripheral neuropathies. In a recent report, we have characterized a novel PMP22-deficient mouse model in which the first two coding exons were replaced by the lacZ reporter. To investigate further the myelin abnormalities in the absence of PMP22, sciatic nerves and dorsal root ganglion (DRG) neuron explant cultures from PMP22-deficient mice were studied at various stages of myelination. Throughout the first 3 months of postnatal development, myelin protein and beta4 integrin levels are dramatically reduced, whereas p75 and beta1 integrin remain elevated. By immunostaining, the distributions of several glial proteins, including beta4 integrin, the voltage-gated potassium channel Kv1.1, and E-cadherin, are altered. Schwann cells from PMP22-deficient mice are able to produce limited amounts of myelin in DRG explant cultures, yet the internodal segments are dramatically fewer and shorter. The comparison of PMP22-deficient mice with other PMP22 mutant models reveals that the decrease in beta4 integrin is specific to an absence of PMP22. Furthermore, whereas lysosome-associated membrane protein 1 and ubiquitin are notably up-regulated in nerves of PMP22-deficient mice, heat shock protein 70 levels remain constant or decrease compared with wild-type or PMP22 mutant samples. Together these results support a role for PMP22 in the early events of peripheral nerve myelination. Additionally, although myelin abnormalities are a commonality among PMP22 neuropathic models, the underlying subcellular mechanisms are distinct and depend on the specific genetic abnormality.


Subject(s)
Cell Membrane/metabolism , Myelin Proteins/deficiency , Myelin Sheath/ultrastructure , Peripheral Nervous System/growth & development , Animals , Blotting, Western , Cell Membrane/chemistry , Ganglia, Spinal/ultrastructure , Immunohistochemistry , Integrins/metabolism , Mice , Mice, Transgenic , Organ Culture Techniques , Schwann Cells , Sciatic Nerve/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...