Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 9(9): e20203, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809946

ABSTRACT

Genetic studies on yield and yield quality are becoming benchmarks for farmers and industry in selecting and developing varieties. Evaluations that combine various stability statistics can provide more accurate information to select the ideal genotype. This study aims to identify the effect of genotype by environment interactions (GEIs) for yield and yield quality, to select high yield and stable sweet potato genotypes, as well as to select superior genotypes based on yield and yield quality. Three different environments in West Java, Indonesia, were used to test the sweet potato genotypes using a randomized block design that was repeated three times. Highly significant effects of sweet potato genotypes (G), environments (E), and GEIs were observed for yield and yield quality. The Combined ANOVA showed that GEIs effect contributed 54.88% for yield, 40.01% for sweetness, 10.46% for moisture content, 68.80% for tuber diameter, and 72.57% for tuber length from the sum of square. Five most high and stable yield on sweet potato genotypes identified by all measures, includes G4, G6, G7, G31, and G32. Genotype by yield*traits (GYT) selected seven genotypes that have superior in yield and yield quality, they were G7, G15, G4, G20, G6, G31, and G14. Based on stability measurements and GYT biplots, the genotypes G4, G6, G7, and G31 are in both slices. So that the four genotypes have high, stable yields, and have a good combination of traits for yield quality. Our findings can be used for improvement cultivation involving partner companies, partner institutions, and farmers, and the selected genotypes can be release as superior varieties candidate.

2.
Pak J Biol Sci ; 24(8): 840-846, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34486351

ABSTRACT

<b>Background and Objective:</b> Inflammation occurs <i>via</i> several mechanisms, one of which includes the production of Nitric Oxide (NO) catalyzed by inducible nitric oxide synthase (iNOS), which is inhibited selectively by isothioureas. <i>Ageratum conyzoides</i> L. has shown activity in reducing pain and inflammation, although the molecular mechanism had not been undertaken. The objectives of this work were (1) to study the mechanism of anti-inflammatory activity of <i>A. conyzoides</i> through inhibition of iNOS, (2) to correlate the iNOS inhibitory activity of the plant with the total flavonoid content of the plants and (3) to identify the flavonol synthase (FLS), an enzyme that catalyzes the production of quercetin. <b>Materials and Methods:</b> The inhibitory activity against iNOS was assayed by <i>in vitro</i> method. The total flavonoids (calculated as quercetin) of <i>A. conyzoides</i> were determined by fluorometry. The protein extraction of the leaves was carried out by employing Laing and Christeller's (2004) method, followed with SDS-PAGE. <b>Results:</b> The inhibitory activity (IC<sub>50</sub>) of ethanol extract and ethyl acetate fraction of <i>A. conyzoides</i> against iNOS was 92.05 and 4.78 µg mL<sup></sup><sup>1</sup>, respectively. Pearson correlation analysis resulted in 0.548 (ethanol extract) and 0.696 (ethyl acetate fraction). The total flavonoids (calculated as quercetin) contained in the ethanol extract and ethyl acetate fraction of <i>A. conyzoides</i> were 0.71 and 7.65%, respectively. The FLS in <i>A. conyzoides</i> leaves was identified at 31 kDa. <b>Conclusion:</b> <i>A. </i>c<i>onyzoides</i> L. is potential in inhibiting iNOS due to quercetin contained in the leaves. This report will add a scientific insight of <i>A. conyzoides</i> for biological sciences.


Subject(s)
Ageratum/growth & development , Ageratum/metabolism , Nitric Oxide Synthase/metabolism , Anti-Inflammatory Agents , Ethanol/chemistry , Flavonoids/chemistry , Indonesia , Inhibitory Concentration 50 , Nitric Oxide/chemistry , Nitric Oxide Synthase Type II/chemistry , Oxidoreductases/chemistry , Phenol/chemistry , Plant Extracts , Plant Leaves/drug effects , Plant Proteins/chemistry , Quercetin/pharmacology , Ultraviolet Rays
3.
Heliyon ; 7(4): e06881, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34007919

ABSTRACT

Orange-Fleshed Sweet Potato (OFSP) is an important crop in Indonesia. Yield potential and genotypic adaptability are important factors in varietal development. The purpose of this study was to estimate the stability of yield and to select the best OFSP genotypes across three agroecosystems in West Java, Indonesia. The field trials used were augmented design with 50 F1 Orange-Fleshed Sweet Potato (OFSP) genotypes as treatment, and seven check varieties as controls. The experiments were conducted in three different agroecosystems in West Java (Sumedang, Bandung, and Karawang). Selection was based on physical characteristics of sweet potato tuber, yield and stability across three environments. Data analysis of the yield characters, yield component, and tuber quality were performed by combined variance analysis. Selected genotypes were analyzed for stability yield using the parametric, non-parametric, Additive Main effects and Multiplicative Interaction (AMMI), AMMI Stability Value (ASV), and Genotype and Genotype by Environment (GGE) biplot models. Results identified the top best ten F1 genotypes namely F1-38 (G1), F1-69 (G2), F1-71 (G3), F1-77 (G4), F1-127 (G5), F1-128 (G6), F1-135 (G7), F1-159 (G8), F1-191 (G9), and F1-226 (G10). Location showed a significant effect on yield. Genotypes F1-069, F1-077, F1-226, F1-038, and F1-128 have the lowest ASR based on non-parametric and parametric stability models and there were identified as the most stable. AMMI analysis identified F1-128, F1-135, F1-038, and F1-069 as the most stable genotypes. F1-38 (G1), F1-69 (G2), F1-128 (G6) were found to be the most stable genotypes based on ASV analysis, while GGE biplot identified F1-38 (G1) and F1-69 (G2) genotypes as the stable genotypes. Other genotypes were considered to as location-specific. Based on AMMI, ASV, and GGE Biplot models, F1-038, and F1-069 were identified as stable genotypes. They produced higher yields than other genotypes. Therefore, the F1-038 and F1-069 genotypes can be potentially recommended as superior varieties for West Java, Indonesia.

4.
Data Brief ; 32: 106297, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32995393

ABSTRACT

There are many local varieties of sweet potatoes which are cultivated and consumed in Indonesia. The food industry which uses sweet potato as the main raw material has been developed in West Java. Demand for orange-fleshed sweet potato is high, but the supply of demand has not been fulfilled. This is because the varieties that are widely cultivated do not meet consumer standards and preferences, so new superior genotypes are needed following demand. Currently, selection of stable and high-yielding genotypes and accordance with consumer and industry preferences is one of the focuses of sweet potato research. Orange-fleshed sweet potato multi locations testing in accordance with consumer and industry preferences, can be used as a basis for consideration in the development program. The purpose of this study were to identify genotype by environment interactions (GEIs) and t select superior genotypes and to estimate yield stability across three locations in West Java, Indonesia. Combined analysis of variance (ANOVA) was used to determine significant differences between each genotype tested in term of yield and to estimated genotype by environment interactions (GEIs). Additive Main Effects and Multiplicative Interaction (AMMI), Genotype Plus Genotype by Environment Interactions (GGE) biplots, and Parametric and non-parametric stability measurements were used to determine yield stability from genotypes tested in all locations (Sumedang Regency, Bandung Regency, Karawang Regency). Data in this article showed that the genotypes, environments, and GEIs had an effect on sweet potato yields, with influences of 35.03%, 18.87%, and 46.01%, respectively. The results in this data also indicate that some new sweet potato genotypes have stable and high yields in three environments in West Java, Indonesia. So they were can be used for development in sweet potato breeding programs.

5.
PLoS Biol ; 8(6): e1000388, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20532241

ABSTRACT

In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K(+)-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K(+) channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K(+) influx. We further suggest that K(+) influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a component of reproductive isolation in plants.


Subject(s)
Defensins/physiology , Pollen , Potassium Channels/physiology , Zea mays/physiology , Zea mays/genetics
6.
Plant Cell ; 17(3): 730-45, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15705951

ABSTRACT

We report the identification and functional analysis of TRANSPARENT LEAF AREA1 (TLA1), a maize (Zea mays) gene representing a novel class of secreted, extremely hydrophobic peptides (proteolipids) with a C-terminal Caax box-like motif. ZmTLA1 encodes 27 amino acid residues and is most strongly expressed in the egg cell and microspores. Lower transcript amounts were detected during vegetative development. Transgenic maize expressing an antisense transcript displayed a variety of phenotypes. The most visible phenotypes were dwarfism and transparent leaf areas resulting from defective morphogenesis of mesophyll, bundle sheath, stomatal, and epidermal cells during leaf development. Incomplete cell walls were observed, indicating a defect of cytokinesis. The accumulation of gerontoplasts was probably a secondary effect caused by defects of leaf cell morphogenesis. A defect of anther maturation was observed in approximately 30% of the plants displaying the tla phenotype. Male sterility was mainly caused by incomplete disintegration of the tapetal cell layers and tetrad callose as 90% of the microspores developed into functional pollen. Overexpression of ZmTLA1 seemed to have a lethal effect both in maize and Arabidopsis thaliana. Development of primary roots, root hairs, primary leaves, and chloroplasts was suppressed in Arabidopsis seedlings expressing an inducible ZmTLA1-green fluorescent protein (GFP) fusion protein. GFP signals were exclusively detected in cell walls. Based on our observations, we suggest that the ZmTLA1 peptide represents a class of novel plant morphogens required for the development and maturation of leaf and reproductive tissues.


Subject(s)
Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Proteolipids/genetics , Proteolipids/metabolism , Zea mays/growth & development , Zea mays/genetics , Amino Acid Sequence , Base Sequence , DNA, Plant/genetics , Molecular Sequence Data , Phenotype , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/chemistry , Plants, Genetically Modified , Proteolipids/chemistry , RNA, Antisense/genetics , Reproduction , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL