Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339140

ABSTRACT

A role for substance P has been proposed in musculoskeletal fibrosis, with effects mediated through transforming growth factor beta (TGFß). We examined the in vitro effects of substance P on proliferation, collagen secretion, and collagen deposition in rat primary dermal fibroblasts cultured in medium containing 10% fetal bovine serum, with or without TGFß. In six-day cultures, substance P increased cell proliferation at concentrations from 0.0002 to 100 nM. TGFß increased proliferation at concentrations from 0.0002 to 2 pg/mL, although higher concentrations inhibited proliferation. Substance P treatment alone at concentrations of 100, 0.2, and 0.00002 nM did not increase collagen deposition per cell, yet when combined with TGFß (5 ng/mL), increased collagen deposition compared to TGFß treatment alone. Substance P treatment (100 nM) also increased smooth muscle actin (SMA) expression at 72 h of culture at a level similar to 5 ng/mL of TGFß; only TGFß increased SMA at 48 h of culture. Thus, substance P may play a role in potentiating matrix deposition in vivo when combined with TGFß, although this potentiation may be dependent on the concentration of each factor. Treatments targeting substance P may be a viable strategy for treating fibrosis where both substance P and TGFß play roles.


Subject(s)
Substance P , Transforming Growth Factor beta , Rats , Animals , Transforming Growth Factor beta/metabolism , Substance P/pharmacology , Substance P/metabolism , Cells, Cultured , Fibroblasts/metabolism , Collagen/metabolism , Fibrosis , Transforming Growth Factor beta1/metabolism
2.
Brain Behav Immun Health ; 35: 100714, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38111687

ABSTRACT

Poor sleep is thought to enhance pain via increasing peripheral and/or central sensitization. Aerobic exercise, conversely, relives pain via reducing sensitization, among other mechanisms. This raises two clinical questions: (1) does poor sleep contribute to the transition from acute-to-persistent pain, and (2) can exercise protect against this transition? This study tested these questions and explored underlying mechanisms in a controlled injury model. Twenty-nine adult female Sprague-Dawley rats performed an intensive lever-pulling task for 4 weeks to induce symptoms consistent with clinical acute-onset overuse injury. Rats were then divided into three groups and exposed for 4 weeks to either: voluntary exercise via access to a running wheel, sleep disturbance, or both. Pain-related behaviours (forepaw mechanical sensitivity, reflexive grip strength), systemic levels of brain derived neurotrophic factor (BDNF), estradiol and corticosterone, and white blood cells (WBC) were assessed pre-injury, post-injury and post-intervention. Mechanical sensitivity increased post-injury and remained elevated with sleep disturbance alone, but decreased to pre-injury levels with exercise both with and without sleep disturbance. Reflexive grip strength decreased post-injury but recovered post-intervention-more with exercise than sleep disturbance. BDNF increased with sleep disturbance alone, remained at pre-injury levels with exercise regardless of sleep, and correlated with mechanical sensitivity. WBCs and estradiol increased with exercise alone and together with sleep disturbance, respectively. Corticosterone was not impacted by injury/intervention. Findings provide preliminary evidence for a role of poor sleep in the transition from acute-to-persistent pain, and the potential for aerobic exercise to counter these effects. BDNF might have a role in these relationships.

3.
Biomolecules ; 13(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37759735

ABSTRACT

Extracellular histones, part of the protein group known as damage-associated molecular patterns (DAMPs), are released from damaged or dying cells and can instigate cellular toxicity. Within the context of chronic obstructive pulmonary disease (COPD), there is an observed abundance of extracellular histone H3.3, indicating potential pathogenic implications. Notably, histone H3.3 is often found hyperacetylated (AcH3.3) in the lungs of COPD patients. Despite these observations, the specific role of these acetylated histones in inducing pulmonary tissue damage in COPD remains unclear. To investigate AcH3.3's impact on lung tissue, we administered recombinant histones (rH2A, rH3.3, and rAcH3.3) or vehicle solution to mice via intratracheal instillation. After 48 h, we evaluated the lung toxicity damage and found that the rAcH3.3 treated animals exhibited more severe lung tissue damage compared to those treated with non-acetylated H3.3 and controls. The rAcH3.3 instillation resulted in significant histological changes, including alveolar wall rupture, epithelial cell damage, and immune cell infiltration. Micro-CT analysis confirmed macroscopic structural changes. The rAcH3.3 instillation also increased apoptotic activity (cleavage of caspase 3 and 9) and triggered acute systemic inflammatory marker activation (TNF-α, IL-6, MCP-3, or CXCL-1) in plasma, accompanied by leukocytosis and lymphocytosis. Confocal imaging analysis confirmed lymphocytic and monocytic/macrophage lung infiltration in response to H3.3 and AcH3.3 administration. Taken together, our findings implicate extracellular AcH3.3 in inducing cytotoxicity and acute inflammatory responses, suggesting its potential role in promoting COPD-related lung damage progression.

4.
JBMR Plus ; 7(9): e10783, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37701153

ABSTRACT

We have an operant model of reaching and grasping in which detrimental bone remodeling is observed rather than beneficial adaptation when rats perform a high-repetition, high-force (HRHF) task long term. Here, adult female Sprague-Dawley rats performed an intense HRHF task for 18 weeks, which we have shown induces radial trabecular bone osteopenia. One cohort was euthanized at this point (to assay the bone changes post task; HRHF-Untreated). Two other cohorts were placed on 6 weeks of rest while being simultaneously treated with either an anti-CCN2 (FG-3019, 40 mg/kg body weight, ip; twice per week; HRHF-Rest/anti-CCN2), or a control IgG (HRHF-Rest/IgG), with the purpose of determining which might improve the trabecular bone decline. Results were compared with food-restricted control rats (FRC). MicroCT analysis of distal metaphysis of radii showed decreased trabecular bone volume fraction (BV/TV) and thickness in HRHF-Untreated rats compared with FRCs; responses improved with HRHF-Rest/anti-CCN2. Rest/IgG also improved trabecular thickness but not BV/TV. Histomorphometry showed that rest with either treatment improved osteoid volume and task-induced increases in osteoclasts. Only the HRHF-Rest/anti-CCN2 treatment improved osteoblast numbers, osteoid width, mineralization, and bone formation rate compared with HRHF-Untreated rats (as well as the latter three attributes compared with HRHF-Rest/IgG rats). Serum ELISA results were in support, showing increased osteocalcin and decreased CTX-1 in HRHF-Rest/anti-CCN2 rats compared with both HRHF-Untreated and HRHF-Rest/IgG rats. These results are highly encouraging for use of anti-CCN2 for therapeutic treatment of bone loss, such as that induced by chronic overuse. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

5.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R589-R600, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36062901

ABSTRACT

The aim of this study was to investigate layer and species variations in detrusor muscle strip responses to myogenic, neurogenic, and nicotinic, and muscarinic receptor stimulations. Strips from bladders of 9 dogs and 6 human organ transplant donors were dissected from inner and outer longitudinal muscle layers, at least 1 cm above urethral orifices. Strips were mounted in muscle baths and maximal responses to neurogenic stimulation using electrical field stimulation (EFS) and myogenic stimulation using potassium chloride (KCl, 120 mM) determined. After washing and re-equilibration was completed, responses to nicotinic receptor agonist epibatidine (10 µM) were determined followed by responses to EFS and muscarinic receptor agonist bethanechol (30 µM) in continued presence of epibatidine. Thereafter, strips and full-thickness bladder sections from four additional dogs and three human donors were examined for axonal density and intramural ganglia. In dog bladders, contractions to KCl, epibatidine, and bethanechol were 1.5- to 2-fold higher in the inner longitudinal muscle layer, whereas contractions to EFS were 1.5-fold higher in the outer (both pre- and post-epibatidine). Human bladders showed 1.2-fold greater contractions to epibatidine in the inner layer and to EFS in the outer, yet no layer differences to KCl or bethanechol were noted. In both species, axonal density was 2- to 2.5-fold greater in the outer layer. Dogs had more intramural ganglia in the adventitia/serosa layer, compared with more internal layers and to humans. These findings indicate several layer-dependent differences in receptor expression or distribution, and neurogenic responses in dog and human detrusor muscles, and myogenic/muscarinic differences between dog versus humans.


Subject(s)
Receptors, Nicotinic , Urinary Bladder , Animals , Bethanechol/metabolism , Bethanechol/pharmacology , Dogs , Electric Stimulation , Humans , Muscarinic Agonists/pharmacology , Muscle Contraction , Muscle, Smooth , Nicotine/pharmacology , Potassium Chloride/metabolism , Potassium Chloride/pharmacology , Receptors, Muscarinic/metabolism , Receptors, Nicotinic/metabolism , Urinary Bladder/metabolism
6.
Int J Mol Sci ; 23(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35743030

ABSTRACT

The effectiveness of manual therapy in reducing the catabolic effects of performing repetitive intensive force tasks on bones has not been reported. We examined if manual therapy could reduce radial bone microstructural declines in adult female Sprague-Dawley rats performing a 12-week high-repetition and high-force task, with or without simultaneous manual therapy to forelimbs. Additional rats were provided 6 weeks of rest after task cessation, with or without manual therapy. The control rats were untreated or received manual therapy for 12 weeks. The untreated TASK rats showed increased catabolic indices in the radius (decreased trabecular bone volume and numbers, increased osteoclasts in these trabeculae, and mid-diaphyseal cortical bone thinning) and increased serum CTX-1, TNF-α, and muscle macrophages. In contrast, the TASK rats receiving manual therapy showed increased radial bone anabolism (increased trabecular bone volume and osteoblast numbers, decreased osteoclast numbers, and increased mid-diaphyseal total area and periosteal perimeter) and increased serum TNF-α and muscle macrophages. Rest, with or without manual therapy, improved the trabecular thickness and mid-diaphyseal cortical bone attributes but not the mineral density. Thus, preventive manual therapy reduced the net radial bone catabolism by increasing osteogenesis, while rest, with or without manual therapy, was less effective.


Subject(s)
Cumulative Trauma Disorders , Musculoskeletal Manipulations , Animals , Bone Density , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Cumulative Trauma Disorders/prevention & control , Disease Models, Animal , Female , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
7.
Front Physiol ; 12: 755923, 2021.
Article in English | MEDLINE | ID: mdl-34803739

ABSTRACT

Background: Repetitive strain injuries caused by repetitive occupational work are difficult to prevent for multiple reasons. Therefore, we examined the effectiveness of manual therapy (MT) with rest to treat the inflammation and fibrosis that develops through the performance of a repetitive task. We hypothesized that this treatment would reduce task-induced sensorimotor declines and neuromuscular inflammation. Methods: Twenty-nine female Sprague-Dawley rats performed a reaching and lever-pulling task for 14weeks. All ceased performing the task at 14weeks. Ten were euthanized at this timepoint (TASK). Nine received manual therapy to their upper extremities while resting 7weeks (MTR); 10 were assigned to rest alone (REST). Ten additional food restricted rats were included that neither performed the task nor received manual therapy (FRC). Results: Confirming previous experiments, TASK rats showed behavioral changes (forepaw mechanical hypersensitivity, reduced grip strength, lowered forelimb/forepaw agility, and noxious cold temperature sensitivity), reduced median nerve conduction velocity (NCV), and pathological tissue changes (myelin degradation, increased median nerve and muscle inflammation, and collagen production). Manual therapy with rest (MTR) ameliorated cold sensitivity seen in REST rats, enhanced muscle interleukin 10 (IL-10) more than in REST rats, lead to improvement in most other measures, compared to TASK rats. REST rats showed improved grip strength, lowered nerve inflammation and degraded myelin, and lowered muscle tumor necrosis factor alpha (TNFα) and collagen I levels, compared to TASK rats, yet maintained lowered forelimb/forepaw agility and NCV, and increased neural fibrosis. Conclusion: In our model of repetitive motion disorder, manual therapy during rest had modest effects on behavioral, histological, and physiological measures, compared to rest alone. These findings stand in contrast to the robust preventive effects of manual therapy in this same model.

8.
BMC Musculoskelet Disord ; 22(1): 417, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33952219

ABSTRACT

BACKGROUND: We examined the effectiveness of a manual therapy consisting of forearm skin rolling, muscle mobilization, and upper extremity traction as a preventive treatment for rats performing an intensive lever-pulling task. We hypothesized that this treatment would reduce task-induced neuromuscular and tendon inflammation, fibrosis, and sensorimotor declines. METHODS: Sprague-Dawley rats performed a reaching and lever pulling task for a food reward, 2 h/day, 3 days/week, for 12 weeks, while simultaneously receiving the manual therapy treatment 3 times per week for 12 weeks to either the task-involved upper extremities (TASK-Tx), or the lower extremities as an active control group (TASK-Ac). Results were compared to similarly treated control rats (C-Tx and C-Ac). RESULTS: Median nerves and forearm flexor muscles and tendons of TASK-Ac rats showed higher numbers of inflammatory CD68+ and fibrogenic CD206+ macrophages, particularly in epineurium, endomysium and epitendons than TASK-Tx rats. CD68+ and CD206+ macrophages numbers in TASK-Tx rats were comparable to the non-task control groups. TASK-Ac rats had more extraneural fibrosis in median nerves, pro-collagen type I levels and immunoexpression in flexor digitorum muscles, and fibrogenic changes in flexor digitorum epitendons, than TASK-Tx rats (which showed comparable responses as control groups). TASK-Ac rats showed cold temperature, lower reflexive grip strength, and task avoidance, responses not seen in TASK-Tx rats (which showed comparable responses as the control groups). CONCLUSIONS: Manual therapy of forelimbs involved in performing the reaching and grasping task prevented the development of inflammatory and fibrogenic changes in forearm nerves, muscle, and tendons, and sensorimotor declines.


Subject(s)
Cumulative Trauma Disorders , Musculoskeletal Manipulations , Animals , Fibrosis , Inflammation , Rats , Rats, Sprague-Dawley
9.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R897-R915, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33759573

ABSTRACT

We determined the effect of pelvic organ decentralization and reinnervation 1 yr later on urinary bladder histology and function. Nineteen canines underwent decentralization by bilateral transection of all coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. After exclusions, eight were reinnervated 12 mo postdecentralization with obturator-to-pelvic and sciatic-to-pudendal nerve transfers, then euthanized 8-12 mo later. Four served as long-term decentralized only animals. Before euthanasia, pelvic or transferred nerves and L1-S3 spinal roots were stimulated and maximum detrusor pressure (MDP) recorded. Bladder specimens were collected for histological and ex vivo smooth muscle contractility studies. Both reinnervated and decentralized animals showed less or denuded urothelium, fewer intramural ganglia, and more inflammation and collagen, than controls, although percent muscle was maintained. In reinnervated animals, pgp9.5+ axon density was higher compared with decentralized animals. Ex vivo smooth muscle contractions in response to KCl correlated positively with submucosal inflammation, detrusor muscle thickness, and pgp9.5+ axon density. In vivo, reinnervated animals showed higher MDP after stimulation of L1-L6 roots compared with their transected L7-S3 roots, and reinnervated and decentralized animals showed lower MDP than controls after stimulation of nerves (due likely to fibrotic nerve encapsulation). MDP correlated negatively with detrusor collagen and inflammation, and positively with pgp9.5+ axon density and intramural ganglia numbers. These results demonstrate that bladder function can be improved by transfer of obturator nerves to pelvic nerves at 1 yr after decentralization, although the fibrosis and inflammation that developed were associated with decreased contractile function.


Subject(s)
Muscle, Smooth/physiopathology , Nerve Transfer , Spinal Cord Injuries/physiopathology , Spinal Nerves/physiopathology , Urinary Bladder/innervation , Animals , Dogs , Electric Stimulation/methods , Muscle Contraction/physiology , Nerve Regeneration/physiology , Nerve Transfer/methods , Spinal Nerve Roots/physiopathology , Urinary Bladder/physiopathology
10.
Connect Tissue Res ; 62(1): 133-149, 2021 01.
Article in English | MEDLINE | ID: mdl-33030055

ABSTRACT

AIM: To examine the chronic effect of force on mRNA and protein expression levels of fibrosis-related genes in flexor digitorum muscles in a rat model of repetitive overuse injury that induces muscle fibrosis at high force levels. MATERIALS AND METHODS: Two groups of rats were trained to perform a voluntary repetitive lever-pulling task at either a high (HFHR) or a low force (LFHR) for 18 weeks, while a control group (FRC) performed no task. RNA and protein were prepared from forelimb flexor digitorum muscles. Fibrosis-related gene RNA transcripts were evaluated using quantitative PCR (qPCR) and analyzed using the geometric mean of three housekeeping genes or the mean of each individually as reference. Protein levels were quantified using ELISA, western blot, or immunohistofluorescence. RESULTS: Of eight fibrosis-related mRNAs examined, only FGF2 demonstrated a consistent significant increase in the HFHR group, compared to the FRC group. However, protein amounts of collagen type 1, collagen type 3, and TGFß1 were significantly higher in the HFHR, compared to the FRC and LFHR groups, while CCN2 and FGF2 were higher in both HFHR and LFHR, compared to the FRC group. CONCLUSIONS: Our results suggest that there is steady-state transcription of fibrogenic genes in muscles with established fibrosis, implying that post-transcriptional processes are responsible for the increased protein levels of fibrotic factors during muscle overuse conditions. We hypothesize that targeting such pathways represents a valid approach to treat overuse injury. Alternatively, FGF2 gene expression may represent a valid target for therapy.


Subject(s)
Muscle, Skeletal , Animals , Collagen Type I , Cumulative Trauma Disorders/genetics , Cumulative Trauma Disorders/pathology , Fibroblast Growth Factor 2 , Fibrosis , Muscle, Skeletal/pathology , RNA , Rats , Rats, Sprague-Dawley
11.
Connect Tissue Res ; 62(1): 115-132, 2021 01.
Article in English | MEDLINE | ID: mdl-32683988

ABSTRACT

Purpose/Aim: We recently found that blocking CCN2 signaling using a monoclonal antibody (FG-3019) may be a novel therapeutic strategy for reducing overuse-induced tissue fibrosis. Since CCN2 plays roles in osteoclastogenesis, and persistent performance of a high repetition high force (HRHF) lever pulling task results in a loss in trabecular bone volume in the radius, we examined here whether blocking CCN2 signaling would reduce the early catabolic effects of performing a HRHF task for 3 weeks. Materials and Methods: Young adult, female, Sprague-Dawley rats were operantly shaped to learn to pull at high force levels, before performing the HRHF task for 3 weeks. HRHF task rats were then left untreated (HRHF Untreated), treated in task weeks 2 and 3 with a monoclonal antibody that antagonizes CCN2 (HRHF+FG-3019), or treated with an IgG (HRHF+IgG), while continuing to perform the task. Non-task control rats were left untreated. Results: In metaphyseal trabeculae of the distal radius, HRHF Untreated and HRHF-IgG rats showed increased osteoblast numbers and other indices of bone formation, compared to controls, yet decreased trabecular bone volume, increased osteoclast numbers, and increased serum CTX-1 (a serum biomarker of bone resorption). HRHF+FG-3019 rats also showed increased osteoblast numbers and bone formation, but in contrast to HRHF Untreated and HRHF-IgG rats, showed higher trabecular bone volume, and reduced osteoclast numbers and serum CTX-1 levels (and statistically similar to Control levels). Conclusions: HRHF loading increased bone formation in each task group, yet blocking CCN2 dampened trabecular bone catabolism by reducing osteoclast numbers and activity.


Subject(s)
Osteogenesis , Animals , Antibodies, Monoclonal , Connective Tissue Growth Factor , Cumulative Trauma Disorders , Disease Models, Animal , Female , Immunoglobulin G , Rats , Rats, Sprague-Dawley
12.
J Orthop Res ; 38(11): 2396-2408, 2020 11.
Article in English | MEDLINE | ID: mdl-32379362

ABSTRACT

Encapsulation of median nerves is a hallmark of overuse-induced median mononeuropathy and contributes to functional declines. We tested if an antibody against CTGF/CCN2 (termed FG-3019 or Pamrevlumab) reduces established neural fibrosis and sensorimotor declines in a clinically relevant rodent model of overuse in which median mononeuropathy develops. Young adult female rats performed a high repetition high force (HRHF) lever-pulling task for 18 weeks. Rats were then euthanised at 18 weeks (HRHF untreated), or rested and systemically treated for 6 weeks with either an anti-CCN2 monoclonal antibody (HRHF-Rest/FG-3019) or IgG (HRHF-Rest/IgG), with results compared with nontask control rats. Neuropathology was evident in HRHF-untreated and HRHF-Rest/IgG rats as increased perineural collagen deposition and degraded myelin basic protein (dMBP) in median nerves, and increased substance P in lower cervical dorsal root ganglia (DRG), compared with controls. Both groups showed functional declines, specifically, decreased sensory conduction velocity in median nerves, noxious cold temperature hypersensitivity, and grip strength declines, compared with controls. There were also increases of ATF3-immunopositive nuclei in ventral horn neurons in HRHF-untreated rats, compared with controls (which showed none). FG-3019-treated rats showed no increase above control levels of perineural collagen or dMBP in median nerves, Substance P in lower cervical DRGs, or ATF3-immunopositive nuclei in ventral horns, and similar median nerve conduction velocities and thermal sensitivity, compared with controls. We hypothesize that neural fibrotic processes underpin the sensorimotor declines by compressing or impeding median nerves during movement, and that inhibiting fibrosis using an anti-CCN2 treatment reverses these effects.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Connective Tissue Growth Factor/antagonists & inhibitors , Median Neuropathy/drug therapy , Animals , Anterior Horn Cells/drug effects , Antibodies, Monoclonal, Humanized/pharmacology , Disease Models, Animal , Drug Evaluation, Preclinical , Estradiol/blood , Female , Fibrosis , Ganglia, Spinal/drug effects , Median Neuropathy/blood , Myelin Sheath/drug effects , Rats, Sprague-Dawley
13.
FASEB J ; 34(5): 6554-6569, 2020 05.
Article in English | MEDLINE | ID: mdl-32227398

ABSTRACT

Tissue fibrosis is a hallmark of overuse musculoskeletal injuries and contributes to functional declines. We tested whether inhibition of CCN2 (cellular communication network factor 2, previously known as connective tissue growth factor, CTGF) using a specific antibody (termed FG-3019 or pamrevlumab) reduces established overuse-induced muscle fibrosis in a clinically relevant rodent model of upper extremity overuse injury. Young adult rats performed a high repetition high force (HRHF) reaching and lever-pulling task for 18 weeks, after first being shaped for 6 weeks to learn this operant task. Rats were then euthanized (HRHF-Untreated), or rested and treated for 6 weeks with FG-3019 (HRHF-Rest/FG-3019) or a human IgG as a vehicle control (HRHF-Rest/IgG). HRHF-Untreated and HRHF-Rest/IgG rats had higher muscle levels of several fibrosis-related proteins (TGFß1, CCN2, collagen types I and III, and FGF2), and higher muscle numbers of alpha SMA and pERK immunopositive cells, compared to control rats. Each of these fibrogenic changes was restored to control levels by the blocking of CCN2 signaling in HRHF-Rest/FG-3019 rats, as were HRHF task-induced increases in serum CCN2 and pro-collagen I intact N-terminal protein. Levels of cleaved CCN3, an antifibrotic protein, were lowered in HRHF-Untreated and HRHF-Rest/IgG rats, compared to control rats, yet elevated back to control levels in HRHF-Rest/FG-3019 rats. Significant grip strength declines observed in HRHF-Untreated and HRHF-Rest/IgG rats, were restored to control levels in HRHF-Rest/FG-3019 rats. These results are highly encouraging for use of FG-3019 for therapeutic treatment of persistent skeletal muscle fibrosis, such as those induced with chronic overuse.


Subject(s)
Connective Tissue Growth Factor/antagonists & inhibitors , Cumulative Trauma Disorders/complications , Disease Models, Animal , Fibrosis/prevention & control , Muscle, Skeletal/physiology , Animals , Collagen Type I/metabolism , Female , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Muscle, Skeletal/injuries , Rats , Rats, Sprague-Dawley
14.
BMC Musculoskelet Disord ; 21(1): 57, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32000751

ABSTRACT

BACKGROUND: Musculoskeletal disorders can result from prolonged repetitive and/or forceful movements. Performance of an upper extremity high repetition high force task increases serum pro-inflammatory cytokines and upper extremity sensorimotor declines in a rat model of work-related musculoskeletal disorders. Since one of the most efficacious treatments for musculoskeletal pain is exercise, this study investigated the effectiveness of treadmill running in preventing these responses. METHODS: Twenty-nine young adult female Sprague-Dawley rats were used. Nineteen were trained for 5 weeks to pull a lever bar at high force (15 min/day). Thirteen went on to perform a high repetition high force reaching and lever-pulling task for 10 weeks (10-wk HRHF; 2 h/day, 3 days/wk). From this group, five were randomly selected to undergo forced treadmill running exercise (TM) during the last 6 weeks of task performance (10-wk HRHF+TM, 1 h/day, 5 days/wk). Results were compared to 10 control rats and 6 rats that underwent 6 weeks of treadmill running following training only (TR-then-TM). Voluntary task and reflexive sensorimotor behavioral outcomes were assessed. Serum was assayed for inflammatory cytokines and corticosterone, reach limb median nerves for CD68+ macrophages and extraneural thickening, and reach limb flexor digitorum muscles and tendons for pathological changes. RESULTS: 10-wk HRHF rats had higher serum levels of IL-1α, IL-1ß and TNFα, than control rats. In the 10-wk HRHF+TM group, IL-1ß and TNFα were lower, whereas IL-10 and corticosterone were higher, compared to 10-wk HRHF only rats. Unexpectedly, several voluntary task performance outcomes (grasp force, reach success, and participation) worsened in rats that underwent treadmill running, compared to untreated 10-wk HRHF rats. Examination of forelimb tissues revealed lower cellularity within the flexor digitorum epitendon but higher numbers of CD68+ macrophages within and extraneural fibrosis around median nerves in 10-wk HRHF+TM than 10-wk HRHF rats. CONCLUSIONS: Treadmill running was associated with lower systemic inflammation and moderate tendinosis, yet higher median nerve inflammation/fibrosis and worse task performance and sensorimotor behaviors. Continued loading of the injured tissues in addition to stress-related factors associated with forced running/exercise likely contributed to our findings.


Subject(s)
Exercise Test/adverse effects , Forelimb/pathology , Inflammation Mediators/blood , Musculoskeletal Diseases/blood , Musculoskeletal Diseases/pathology , Running/physiology , Animals , Exercise Test/methods , Female , Forelimb/metabolism , Inflammation/blood , Inflammation/metabolism , Inflammation/pathology , Musculoskeletal Diseases/metabolism , Rats , Rats, Sprague-Dawley
15.
J Musculoskelet Neuronal Interact ; 19(4): 396-411, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31789291

ABSTRACT

OBJECTIVES: Fibrosis is one contributing factor in motor dysfunction and discomfort in patients with overuse musculoskeletal disorders. We pharmacologically targeted the primary receptor for Substance P, neurokinin-1, using a specific antagonist (NK1RA) in a rat model of overuse with the goal of improving tissue fibrosis and discomfort. METHODS: Female rats performed a low repetition, high force (LRHF) grasping task for 12 weeks, or performed the task for 12 weeks before being placed on a four week rest break, with or without simultaneous NK1RA treatment. Results were compared to control rats (untreated, or treated 4 weeks with NK1RA or vehicle). RESULTS: Rest improved LRHF-induced declines in grip strength, although rest plus NK1RA treatment (Rest/NK1RA) rescued it. Both treatments improved LRHF-induced increases in muscle TGFß1 and collagen type 1 levels, forepaw mechanical hypersensitivity (Rest/NK1RA more effectively), macrophage influx into median nerves, and enhanced collagen deposition in forepaw dermis. Only Rest/NK1RA reduced muscle hypercellularity. However, LRHF+4wk Rest /NK1RA rats showed hyposensitivity to noxious hot temperatures. CONCLUSIONS: While the NK1RA induced hot temperature hyposensitivity should be taken into consideration if this or related drug were used long-term, the NK1RA more effectively reduced muscle hypercellularity and improved grip strength and forepaw mechanical hypersensitivity.


Subject(s)
Fibrosis/metabolism , Hand Strength/physiology , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Neurokinin-1 Receptor Antagonists/pharmacology , Psychomotor Performance/drug effects , Animals , Cytokines/metabolism , Female , Fibrosis/pathology , Muscle Strength/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Rats , Rats, Sprague-Dawley
16.
J Orthop Res ; 37(11): 2420-2428, 2019 11.
Article in English | MEDLINE | ID: mdl-31297900

ABSTRACT

We assessed whether adding magnetic resonance (MR)-based features to a base model of clinically accessible participant characteristics (i.e., serological, radiographic, demographic, symptoms, and physical function) improved classification of adults who developed accelerated radiographic knee osteoarthritis (AKOA) or not over the subsequent 4 years. We conducted a case-control study using radiographs from baseline and the first four annual visits of the osteoarthritis initiative to define groups. Eligible individuals had no radiographic KOA in either knee at baseline (Kellgren-Lawrence [KL] grade <2). We classified two groups matched on sex (i) AKOA: at least one knee developed advanced-stage KOA (KL = 3 or 4) within 48 months and (ii) did not develop AKOA within 48 months. The MR-based features were assessments of bone, effusion/synovitis, tendons, ligaments, cartilage, and menisci. All characteristics and MR-based features were from the baseline visit. Classification and regression tree analyses were performed to determine classification rules and identify statistically important variables. The CART models with and without MR features each explained approximately 40% of the variability. Adding MR-based features to the model yielded modest improvements in specificity (0.90 vs. 0.82) but lower sensitivity (0.62 vs. 0.70) than the base model. There was consistent evidence that serum glucose, effusion-synovitis volume, and cruciate ligament degeneration are statistically important variables in classifying individuals who will develop AKOA. We found common MR-based measures failed to dramatically improve classification. These findings also show a complex interplay among participant characteristics and a need to identify novel characteristics to improve classification. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2420-2428, 2019.


Subject(s)
Magnetic Resonance Imaging , Models, Theoretical , Osteoarthritis, Knee/diagnostic imaging , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , Risk Assessment
17.
J Orthop Res ; 37(9): 2004-2018, 2019 09.
Article in English | MEDLINE | ID: mdl-31041999

ABSTRACT

Fibrosis may be a key factor in sensorimotor dysfunction in patients with chronic overuse-induced musculoskeletal disorders. Using a clinically relevant rodent model, in which performance of a high demand handle-pulling task induces tissue fibrosis and sensorimotor declines, we pharmacologically blocked cellular communication network factor 2 (CCN2; connective tissue growth factor) with the goal of reducing the progression of these changes. Young adult, female Sprague-Dawley rats were shaped to learn to pull at high force levels (10 min/day, 5 weeks), before performing a high repetition high force (HRHF) task for 3 weeks (2 h/day, 3 days/week). HRHF rats were untreated, or treated in task weeks 2 and 3 with a monoclonal antibody that blocks CCN2 (FG-3019), or a control immunoglobulin G (IgG). Control rats were untreated or received FG-3019, IgG, or vehicle (saline) injections. Mean task reach rate and grasp force were higher in 3-week HRHF + FG-3019 rats, compared with untreated HRHF rats. Grip strength declined while forepaw mechanical sensitivity increased in untreated HRHF rats, compared with controls; changes improved by FG-3019 treatment. The HRHF task increased collagen in multiple tissues (flexor digitorum muscles, nerves, and forepaw dermis), which was reduced with FG-3019 treatment. FG-3019 treatment also reduced HRHF-induced increases in CCN2 and transforming growth factor ß in muscles. In tendons, FG-3019 reduced HRHF-induced increases in CCN2, epitendon thickening, and cell proliferation. Our findings indicate that CCN2 is critical to the progression of chronic overuse-induced multi-tissue fibrosis and functional declines. FG-3019 treatment may be a novel therapeutic strategy for overuse-induced musculoskeletal disorders. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2004-2018, 2019.


Subject(s)
Connective Tissue Growth Factor/physiology , Cumulative Trauma Disorders/etiology , Gait Disorders, Neurologic/prevention & control , Animals , Chronic Disease , Collagen/analysis , Connective Tissue Growth Factor/analysis , Connective Tissue Growth Factor/antagonists & inhibitors , Cumulative Trauma Disorders/drug therapy , Disease Models, Animal , Female , Fibrosis , Hand Strength , Inflammation/etiology , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/analysis
18.
Pain ; 160(3): 632-644, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30461558

ABSTRACT

Painful and disabling musculoskeletal disorders remain prevalent. In rats trained to perform repetitive tasks leading to signs and dysfunction similar to those in humans, we tested whether manual therapy would prevent the development of the pathologies and symptoms. We collected behavioral, electrophysiological, and histological data from control rats, rats that trained for 5 weeks before performing a high-repetition high-force (HRHF) task for 3 weeks untreated, and trained rats that performed the task for 3 weeks while being treated 3x/week using modeled manual therapy (MMT) to the forearm (HRHF + MMT). The MMT included bilateral mobilization, skin rolling, and long axis stretching of the entire upper limb. High-repetition high-force rats showed decreased performance of the operant HRHF task and increased discomfort-related behaviors, starting after training. HRHF + MMT rats showed improved task performance and decreased discomfort-related behaviors compared with untreated HRHF rats. Subsets of rats were assayed for presence or absence of ongoing activity in C neurons and slow Aδ neurons in their median nerves. Neurons from HRHF rats had a heightened proportion of ongoing activity and altered conduction velocities compared with control and MMT-treated rats. Median nerve branches in HRHF rats contained increased numbers of CD68 macrophages and degraded myelin basic protein, and showed increased extraneural collagen deposition, compared with the other groups. We conclude that the performance of the task for 3 weeks leads to increased ongoing activity in nociceptors, in parallel with behavioral and histological signs of neuritis and nerve injury, and that these pathophysiologies are largely prevented by MMT.


Subject(s)
Cumulative Trauma Disorders/complications , Gait Disorders, Neurologic/prevention & control , Musculoskeletal Manipulations/methods , Nociceptors/physiology , Pain/etiology , Pain/prevention & control , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Case-Control Studies , Cumulative Trauma Disorders/rehabilitation , Disease Models, Animal , Electrophysiology , Fasting , Female , Gait Disorders, Neurologic/etiology , Inflammation/complications , Inflammation/pathology , Median Nerve/physiopathology , Myelin Basic Protein/metabolism , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric
19.
Bone ; 110: 267-283, 2018 05.
Article in English | MEDLINE | ID: mdl-29476978

ABSTRACT

We have an operant rat model of upper extremity reaching and grasping in which we examined the impact of performing a high force high repetition (High-ForceHR) versus a low force low repetition (Low-ForceHR) task for 18weeks on the radius and ulna, compared to age-matched controls. High-ForceHR rats performed at 4 reaches/min and 50% of their maximum voluntary pulling force for 2h/day, 3days/week. Low-ForceHR rats performed at 6% maximum voluntary pulling force. High-ForceHR rats showed decreased trabecular bone volume in the distal metaphyseal radius, decreased anabolic indices in this same bone region (e.g., decreased osteoblasts and bone formation rate), and increased catabolic indices (e.g., microcracks, increased osteocyte apoptosis, secreted sclerostin, RANKL, and osteoclast numbers), compared to controls. Distal metaphyseal trabeculae in the ulna of High-ForceHR rats showed a non-significant decrease in bone volume, some catabolic indices (e.g., decreased trabecular numbers) yet also some anabolic indices (e.g., increased osteoblasts and trabecular thickness). In contrast, the mid-diaphyseal region of High-ForceHR rats' radial and ulnar bones showed few to no microarchitecture differences and no changes in apoptosis, sclerostin or RANKL levels, compared to controls. In further contrast, Low-ForceHR rats showed increased trabecular bone volume in the radius in the distal metaphysis and increased cortical bone area its mid-diaphysis. These changes were accompanied by increased anabolic indices, no microcracks or osteocyte apoptosis, and decreased RANKL in each region, compared to controls. Ulnar bones of Low-ForceHR rats also showed increased anabolic indices, although fewer than in the adjacent radius. Thus, prolonged performance of an upper extremity reaching and grasping task is loading-, region-, and bone-dependent, with high force loads at high repetition rates inducing region-specific increases in bone degradative changes that were most prominent in distal radial trabeculae, while low force task loads at high repetition rates induced adaptive bone responses.


Subject(s)
Cancellous Bone/pathology , Osteocytes/cytology , Animals , Apoptosis/physiology , Blotting, Western , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Cancellous Bone/diagnostic imaging , Cancellous Bone/metabolism , Female , Genetic Markers/genetics , Immunohistochemistry , In Situ Nick-End Labeling , Osteocytes/metabolism , RANK Ligand/metabolism , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
20.
BMC Musculoskelet Disord ; 19(1): 1, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29304778

ABSTRACT

BACKGROUND: Greater age and body mass index are strong risk factors for osteoarthritis (OA). Older and overweight individuals may be more susceptible to OA because these factors alter tissue turnover in menisci, articular cartilage, and bone via altered glucose homeostasis and inflammation. Understanding the role of inflammation and glucose homeostasis on structural features of early-stage OA may help identify therapeutic targets to delay or prevent the onset of OA among subsets of adults with these features. We examined if serum concentrations of glucose homeostasis (glucose, glycated serum protein [GSP]) or inflammation (C-reactive protein [CRP]) were associated with prevalent knee bone marrow lesions (BMLs) or effusion among adults without knee OA. METHODS: We conducted a cross-sectional study using baseline data from the Osteoarthritis Initiative. We selected participants who had no radiographic knee OA but were at high risk for knee OA. Blinded staff conducted assays for CRP, GSP, and glucose. Readers segmented BML volume and effusion using semi-automated programs. Our outcomes were prevalent BML (knee with a BML volume > 1 cm3) and effusion (knee with an effusion volume > 7.5 cm3). We used logistic regression models with CRP, GSP, or glucose concentrations as the predictors. We adjusted for age, sex, body mass index (BMI), and Physical Activity Scale for the Elderly (PASE) scores. RESULTS: We included 343 participants: mean age = 59 ± 9 years, BMI = 27.9 ± 4.5 kg/m2, PASE score = 171 ± 82, and 64% female. Only CRP was associated with BML prevalence (odds ratio [OR] = 1.43, 95% confidence interval [CI] = 1.09 to 1.87). For effusion, we found an interaction between BMI and CRP: only among adults with a BMI <25 kg/m2 was there a significant trend towards a positive association between CRP and effusion (OR = 1.40, 95% CI = 1.00 to 1.97). We detected a U-shaped relationship between GSP and effusion prevalence. Fasting glucose levels were not significantly associated with the presence of baseline effusion or BML. CONCLUSIONS: Among individuals without knee OA, CRP may be related to the presence of BMLs and effusion among normal weight individuals. Abnormal GSP may be associated with effusion. Future studies should explore whether inflammation and glucose homeostasis are predictive of symptomatic knee OA.


Subject(s)
Glucose/metabolism , Homeostasis/physiology , Osteoarthritis, Knee/blood , Osteoarthritis, Knee/diagnostic imaging , Aged , Cross-Sectional Studies , Female , Humans , Inflammation/blood , Inflammation/diagnostic imaging , Longitudinal Studies , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...