Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Mol Biol Rep ; 51(1): 616, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722391

ABSTRACT

BACKGROUND: Chlorpyrifos (CPF) is a widely used pesticide in the production of plant crops. Despite rapid CPF biodegradation, fish were exposed to wastewater containing detectable residues. Recently, medicinal plants and algae were intensively used in aquaculture to replace antibiotics and ameliorate stress impacts. METHODS AND RESULTS: An indoor experiment was conducted to evaluate the deleterious impacts of CPF pollution on Nile tilapia health and the potential mitigation role of Chlorella vulgaris algae. Firstly, the median lethal concentration LC50 - 72 h of CPF was determined to be 85.8 µg /L in Nile tilapia (35.6 ± 0.5 g body weight) at a water temperature of 27.5 °C. Secondly, fish were exposed to 10% of LC50 - 72 h for six weeks, and tissue samples were collected and examined every two weeks. Also, Nile tilapia were experimentally infected with Streptococcus agalactiae. Exposed fish were immunosuppressed expressed with a decrease in gene expressions of interleukin (IL) 1ß, IL-10, and tumor necrosis factor (TNF)-α. Also, a decline was recorded in glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) gene expression in the head kidney tissue. A high mortality rate (MR) of 100% was recorded in fish exposed to CPF for six weeks and challenged with S. agalactiae. Fish that received dietary C. vulgaris could restore gene expression cytokines and antioxidants compared to the control. After six weeks of CPF exposure, fish suffered from anemia as red blood cell count (RBCs), hemoglobin (Hb), and packed cell volume (PCV) significantly declined along with downregulation of serum total protein (TP), globulin (GLO), and albumin (ALB). Liver enzymes were significantly upregulated in fish exposed to CPF pollution, alanine aminotransferase (ALT) (42.5, 53.3, and 61.7 IU/L) and aspartate aminotransferase (AST) (30.1, 31.2, and 22.8) after 2, 4, and 6 weeks, respectively. On S. agalactiae challenge, high MR was recorded in Nile tilapia exposed to CPF (G3) 60%, 60%, and 100% in week 2, week 4, and week 6, and C. vulgaris provided a relative protection level (RPL) of 0, 14.29, and 20%, respectively. CONCLUSIONS: It was concluded that CPF pollution induces immunosuppressed status, oxidative stress, and anemic signs in Nile tilapia. In contrast, C. vulgaris at a 50 g/kg fish feed dose could partially ameliorate such withdrawals, restoring normal physiological parameters.


Subject(s)
Antioxidants , Chlorella vulgaris , Chlorpyrifos , Cichlids , Fish Diseases , Streptococcus agalactiae , Animals , Streptococcus agalactiae/drug effects , Cichlids/metabolism , Cichlids/microbiology , Cichlids/genetics , Chlorpyrifos/toxicity , Antioxidants/metabolism , Fish Diseases/microbiology , Streptococcal Infections/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Catalase/metabolism , Catalase/genetics , Water Pollutants, Chemical/toxicity , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Oxidative Stress/drug effects , Aquaculture/methods
2.
Health Serv Res Manag Epidemiol ; 11: 23333928241228916, 2024.
Article in English | MEDLINE | ID: mdl-38343767

ABSTRACT

The study aimed at applying Multivariate Generalized Linear Mixed Models to examine factors associated with correlation outcomes, in particular, anthropometric measurements among under-five children in Tanzania. Three anthropometric measurements: weight-for-age (WAZ), height-for-age (HAZ), and weight-for-height (WHZ) among under-five children in Tanzania were jointly modeled to identify common factors associated with childhood malnutrition. A total of 9052 children with valid measures of height and weight were processed and analyzed. The results indicate that WAZ was correlated with HAZ (P-value < 2e-16) and WHZ (P-value < 2e-16). The Multivariate Ordered Logit Model has lower AIC = 53213.92 and BIC = 52727.95, indicating better model fit than the Multivariate Ordered Probit Model. In Tanzania, the age of the child, birth order, mother education level, child gender, mother working status, wealth index, marital status, and mother body mass index are important determinants of malnutrition among children under the age of five. Moreover, the common factors were child's age, Birth order, Mother's education attainment, child's sex, Mother working status, wealth index, Marital status, and Mother's Body Mass Index. As a result, emphasis should be placed on analyzing correlated health outcomes in order to draw conclusions about the factors that may have a mutual effect on anthropometric measurements.

3.
Mol Biol Rep ; 51(1): 71, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175215

ABSTRACT

BACKGROUND: Pollution with heavy metals (HMs) is time- and concentration-dependent. Lead and zinc pollute the aquatic environment, causing severe health issues in aquatic animals. MATERIALS AND METHODS: Nile tilapia, the predominant cultured fish in Egypt, were experimentally exposed to 10% of LC50 of lead nitrate (PbNO3) and zinc sulfate (ZnSO4). Samples were collected in three different periods, 4, 6, and 8 weeks, in addition to a trial to treat the experimental fish infected with Aeromonas hydrophila, with an antibiotic (florfenicol). RESULTS: Liver enzymes were linearly upsurged in a time-dependent manner in response to HMs exposure. ALT was 92.1 IU/l and AST was 82.53 IU/l after eight weeks. In the eighth week of the HMs exposure, in the hepatic tissue, the levels of glutathione peroxidase (GPx), catalase (CAT), and metallothionein (MT) were increased to 117.8 U/mg prot, 72.2 U/mg prot, and 154.5 U/mg prot, respectively. On exposure to HMs, gene expressions of some cytokines were linearly downregulated in a time-dependent manner compared to the control. After four weeks of exposure to the HMs, the oxidative burst activity (OBA) of immune cells was decreased compared to the control 9.33 and 10.3 cells, respectively. Meanwhile, the serum bactericidal activity (SBA) significantly declined to 18.5% compared to the control 32.6% after eight weeks of exposure. Clinical signs of A. hydrophila infection were exaggerated in polluted fish, with a mortality rate (MR) of 100%. The re-isolation rate of A. hydrophila was decreased in fish treated with florfenicol regardless of the pollution impacts after eight weeks of HMs exposure. CONCLUSION: It could be concluded that the immune suppression and oxidative stress resulting from exposure to HMs are time-dependent. Clinical signs and post-mortem lesions in polluted fish infected with A. hydrophila were prominent. Infected-Nile tilapia had weak responses to florfenicol treatment due to HMs exposure.


Subject(s)
Cichlids , Lead , Animals , Lead/toxicity , Zinc Sulfate , Nitrates , Aeromonas hydrophila
4.
iScience ; 26(8): 107261, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37520703

ABSTRACT

Secondary human lymphoid tissue immune reactions take place in a highly coordinated environment with compartmentalization representing a fundamental feature of this organization. In situ profiling methodologies are indispensable for the understanding of this compartmentalization. Here, we propose a complementary experimental approach aiming to reveal different aspects of this process. The analysis of human tonsils, using a combination of single cell phenotypic analysis based on flow cytometry and multiplex imaging and mass spectrometry-based methodologies, revealed a compartmentalized organization at the cellular and molecular levels. More specifically, the skewed distribution of highly specialized immune cell subsets and relevant soluble mediators was accompanied by a compartmentalized localization of several lipids across different anatomical areas of the tonsillar tissue. The performance of such combinatorial experimental approaches could lead to the identification of novel in situ interactions and molecular targets for the in vivo manipulation of lymphoid organ, particularly the germinal center, immune reactions.

6.
J Pharm Pharmacol ; 75(8): 1076-1085, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37095069

ABSTRACT

OBJECTIVES: Oxidative stress-mediated colistin's nephrotoxicity is associated with the diminished activity of nuclear factor erythroid 2-related factor 2 (Nrf2) that is primarily correlated with cellular PH domain and leucine-rich repeat protein phosphatase (PHLPP2) levels. This study investigated the possible modulation of PHLPP2/protein kinase B (Akt) trajectory as a critical regulator of Nrf2 stability by rosuvastatin (RST) to guard against colistin-induced oxidative renal damage in rats. METHODS: Colistin (300,000 IU/kg/day; i.p.) was injected for 6 consecutive days, and rats were treated simultaneously with RST orally at 10 or 20 mg/kg. KEY FINDINGS: RST enhanced renal nuclear Nrf2 translocation as revealed by immunohistochemical staining to boost the renal antioxidants, superoxide dismutase (SOD) and reduced glutathione (GSH) along with a marked reduction in caspase-3. Accordingly, rats treated with RST showed significant restoration of normal renal function and histological features. On the molecular level, RST effectively decreased the mRNA expression of PHLPP2 to promote Akt phosphorylation. Consequently, it deactivated GSK-3ß and reduced the gene expression of Fyn kinase in renal tissues. CONCLUSIONS: RST could attenuate colistin-induced oxidative acute kidney injury via its suppressive effect on PHLPP2 to endorse Nrf2 activity through modulating Akt/GSK3 ß/Fyn kinase trajectory.


Subject(s)
Acute Kidney Injury , Proto-Oncogene Proteins c-akt , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , NF-E2-Related Factor 2/metabolism , Rosuvastatin Calcium/pharmacology , Colistin/metabolism , Colistin/pharmacology , Signal Transduction , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/pharmacology , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Kidney , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins c-fyn/pharmacology
7.
Mol Cell Biochem ; 478(11): 2567-2580, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36884151

ABSTRACT

Breast cancer brain metastasis (BCBM) has an incidence of 10-30%. It is incurable and the biological mechanisms that promote its progression remain largely undefined. Consequently, to gain insights into BCBM processes, we have developed a spontaneous mouse model of BCBM and in this study found a 20% penetrance of macro-metastatic brain lesion formation. Considering that lipid metabolism is indispensable to metastatic progression, our goal was the mapping of lipid distributions throughout the metastatic regions of the brain. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of lipids revealed that, relative to surrounding brain tissue, seven long-chain (13-21 carbons long) fatty acylcarnitines, as well as two phosphatidylcholines, two phosphatidylinositols two diacylglycerols, a long-chain phosphatidylethanolamine, and a long-chain sphingomyelin were highly concentrated in the metastatic brain lesion In broad terms, lipids known to be enriched in brain tissues, such as very long-chain (≥ 22 carbons in length) polyunsaturated fatty acid of phosphatidylcholines, phosphatidylethanolamine, sphingomyelins, sulfatides, phosphatidylinositol phosphates, and galactosylceramides, were not found or only found in trace amounts in the metastatic lesion and instead consistently detected in surrounding brain tissues. The data, from this mouse model, highlights an accumulation of fatty acylcarnitines as possible biological makers of a chaotic inefficient vasculature within the metastasis, resulting in relatively inadequate blood flow and disruption of fatty acid ß-oxidation due to ischemia/hypoxia.

8.
BMC Microbiol ; 23(1): 80, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36959570

ABSTRACT

BACKGROUND: Aeromonas hydrophila is an opportunistic pathogen. Thus, it has received significant attention mainly in the fish sectors with high production scales. Nile tilapia broodstock confined in the environment of fish hatcheries can be stressed. Hence, they are vulnerable to A. hydrophila. RESULTS: Sequencing of the gyr B gene revealed the presence of 18 different A. hydrophila strains (kdy 10,620-10,637), which were deposited in the NCBI under accession numbers ON745861-ON745878. The median lethal doses of the isolates ranged from 2.62 × 104 to 3.02 × 106 CFU/mL. Antibiotic resistant genes, sulfonamide (sul1) and tetracycline (tetA) were found in the eighteen isolates. Approximately 83.3% of A. hydrophila strains were sensitive to ciprofloxacin and florfenicol. Further, eight A. hydrophila strains had high MDR indices at 0.27-0.45. All isolates presented with hemolysin activity. However, only 72.22% of them had proteolytic activity, and only 61.11% could form biofilms. Bacterial isolates harbored different pattern virulence genes, the heat-stable cytotonic enterotoxin (ast), cytotoxic enterotoxin (act), and hemolysin (hly) genes were the most prevalent. Also, a trial to inhibit bacterial growth was conducted using titanium dioxide nanoparticles (TiO2 NPs) with three sizes (13, 32, and 123 nm). If A. hydrophila strains with a high MDR index were tested against TiO2 NPs (20 µg/mL) for 1, 12, and 24 h, those with a small size had a greater bactericidal action than large ones. Bacterial strains were inhibited at different percentages in response to TiO2 NP treatment. CONCLUSIONS: Nile tilapia broodstock, mortality is associated with different A. hydrophila strains, which harbored virulent and MDR genes. Furthermore, TiO2 NPs had bactericidal activity, thereby resulting in a considerable reduction in bacterial load.


Subject(s)
Aeromonas , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Cichlids/microbiology , Hemolysin Proteins , Prevalence , Anti-Bacterial Agents/pharmacology , Aeromonas hydrophila/genetics , Enterotoxins/genetics , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology
9.
Biomed Pharmacother ; 157: 114042, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36436490

ABSTRACT

Although the beneficial role of microRNA has been investigated thoroughly, the reno-protective role of microRNA-205 (miR-205) against colistin-induced nephrotoxicity has not yet been tackled. Hence, our study sought to study the possible modulatory effect of rosuvastatin on miR-205 and its downstream target, Egl-9 family hypoxia-inducible factor 2 (EGLN2) to combat oxidative and endoplasmic reticulum (ER) stresses as pivotal contributors to colistin-associated renal injury. Rats were randomly divided into four groups; normal, colistin (300 000 IU/Kg/day; i.p), colistin pretreated with rosuvastatin (10 mg/kg; p.o) and colistin pretreated with rosuvastatin (20 mg/kg; p.o) for 6 successive days. Pretreatment with rosuvastatin attenuated renal injury induced by colistin and enhanced kidney function with a marked reduction in renal injury markers, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Besides, rosuvastatin upregulated renal miR-205 expression and suppressed gene expression of EGLN2. In addition, it downregulated ER stress-related genes (activation transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP)) along with caspases 12 and 3. It also induced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) as detected by immunohistochemical examination besides increased renal antioxidants, reduced glutathione, and superoxide dismutase. In conclusion, rosuvastatin triggered a series of protective mechanisms against colistin-induced nephrotoxicity through modulating miR-205 and EGLN2 expression. Rosuvastatin suppressed ATF4/ CHOP trajectory and activated the Nrf2 pathway to substantiate its antioxidant and anti-apoptotic capacities.


Subject(s)
Colistin , MicroRNAs , Rosuvastatin Calcium , Animals , Rats , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Antioxidants/pharmacology , Apoptosis , Colistin/toxicity , Endoplasmic Reticulum Stress , MicroRNAs/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rosuvastatin Calcium/pharmacology , Transcription Factor 4/metabolism , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
10.
ACS Omega ; 7(48): 44021-44032, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506176

ABSTRACT

The synthesis of copper oxide (CuO)-based nanomaterials has received a tremendous deal of interest in recent years. Particularly, the design and development of novel CuO structures with improved physical and chemical properties have attracted immense attention, especially for catalysis applications. We report on a rational, rapid, and surfactant-free microwave synthesis (MWS) of hierarchical porous copper oxide (HP-CuO) with a three-dimensional (3D) sponge-like topology using an MWS reactor. The activity of the microwave (MW)-synthesized HP-CuO catalysts for carbon monoxide (CO) oxidation was studied and compared to CuO prepared by the conventional heating method (CHM). Results showed that HP-CuO catalysts prepared by MWS for 10 and 30 min surpassed the CuO catalyst prepared by CHM, exhibiting T 80 of 98 and 115 °C, respectively, as compared to 185 °C of CuO prepared by CHM (T80 is the temperature corresponding to 80% CO conversion). In addition, the MW-synthesized HP-CuO catalysts outperformed the CHM-synthesized CuO, achieving a 100% CO conversion at 150 °C compared to 240 °C in the case of CuO prepared by CHM. Interestingly, the HP-CuO catalyst expressed workable CO conversion kinetics with a reaction rate of c.a.35 µmol s-1 g-1 at 150 °C and apparent activation energy (E a) of 82 kJ mol-1. The HP-CuO catalyst showed excellent cycling and long-term stabilities for CO oxidation up to 4 cycles and 72 h on the stream, respectively. The enhanced catalytic activity and stability of the HP-CuO catalyst appear to result from the unique topological and structural features of HP-CuO, which were revealed by SEM, XRD, Raman, BET, TGA, XPS, and TPR techniques.

11.
J Nutr Sci ; 11: e103, 2022.
Article in English | MEDLINE | ID: mdl-36452398

ABSTRACT

Improving the health and well-being of mothers and children is a priority worldwide. The present study aimed to examine the coexistence and correlates of malnutrition among mothers and under-five child pairs using Tanzania Demographic Health Survey 2015-16 data. Height-for-age, height-for-weight and weight-for-age Z-scores were used to assess the nutritional status of children, while body mass index was used to assess the nutritional status of mothers. Correlates of forms of malnutrition were assessed using multinomial logistic regression. Among 8083 pairs, 40⋅9 % were normal, 30⋅3 % were underweight, 17⋅5 % overweight and 11⋅3 % had double burden of malnutrition. The risk of being underweight is highest among the pairs with; children aged 13-59 months (relative risk ratio (RRR) = 2⋅33) and children with small birth weight (RRR = 2⋅67). Overweight is highest among pairs with; mothers aged 35-49 (RRR = 3⋅36), mothers with secondary education and above (RRR = 1⋅85), fathers aged 35+ (RRR = 1⋅38), professional fathers (RRR = 4⋅10) and richer households (RRR = 2⋅06). The double burden of malnutrition is highest among pairs with; children with small birth weight (RRR = 2⋅76), from rural households (RRR = 1⋅24) and from richer households (RRR = 1⋅41). There is a coexistence of forms of malnutrition among mothers and under-five child pairs in Tanzania. The study recommends using multidimensional approaches such as double-duty action for nutrition to eradicate all forms of malnutrition.


Subject(s)
Malnutrition , Mothers , Child , Female , Humans , Thinness/epidemiology , Birth Weight , Overweight/epidemiology , Tanzania/epidemiology , Malnutrition/epidemiology
12.
BioData Min ; 15(1): 30, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36476234

ABSTRACT

Several studies have been conducted to classify various real life events but few are in medical fields; particularly about breast recurrence under statistical techniques. To our knowledge, there is no reported comparison of statistical classification accuracy and classifiers' discriminative ability on breast cancer recurrence in presence of imputed missing data. Therefore, this article aims to fill this analysis gap by comparing the performance of binary classifiers (logistic regression, linear and quadratic discriminant analysis) using several datasets resulted from imputation process using various simulation conditions. Our study aids the knowledge about how classifiers' accuracy and discriminative ability in classifying a binary outcome variable are affected by the presence of imputed numerical missing data. We simulated incomplete datasets with 15, 30, 45 and 60% of missingness under Missing At Random (MAR) and Missing Completely At Random (MCAR) mechanisms. Mean imputation, hot deck, k-nearest neighbour, multiple imputations via chained equation, expected-maximisation, and predictive mean matching were used to impute incomplete datasets. For each classifier, correct classification accuracy and area under the Receiver Operating Characteristic (ROC) curves under MAR and MCAR mechanisms were compared. The linear discriminant classifier attained the highest classification accuracy (73.9%) based on mean-imputed data at 45% of missing data under MCAR mechanism. As a classifier, the logistic regression based on predictive mean matching imputed-data yields the greatest areas under ROC curves (0.6418) at 30% missingness while k-nearest neighbour tops the value (0.6428) at 60% of missing data under MCAR mechanism.

13.
Materials (Basel) ; 15(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36079472

ABSTRACT

Electron backscatter diffraction (EBSD) has been used for more than 30 years for analyzing the structure of minerals and artificial substances. In recent times, EBSD has been widely applied for investigation of irradiated nuclear fuel and matrices for the immobilization of radioactive waste. The combination of EBSD and scanning electron microscopy (SEM/EDS) methods allows researchers to obtain simultaneously data on a specimen's local composition and structure. The article discusses the abilities of SEM/EDS and EBSD techniques to identify zirconolite polytype modifications and members of the polysomatic murataite-pyrochlore series in polyphase ceramic matrices, with simulations of Pu (Th) and the REE-actinide fraction (Nd) of high-level radioactive waste.

14.
Nanomaterials (Basel) ; 12(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35745390

ABSTRACT

Assigned to their outstanding physicochemical properties, TiO2-based materials have been studied in various applications. Herein, TiO2 doped with different Mo contents (Mo-TiO2) was synthesized via a microwave-assisted solvothermal approach. This was achieved using titanium (IV) butoxide and molybdenum (III) chloride as a precursor and dodecylamine as a surface directing agent. The uniform effective heating delivered by microwave heating reduced the reaction time to less than 30 min, representing several orders of magnitude lower than conventional heating methods. The average particle size ranged between 9.7 and 27.5 nm and it decreased with increasing the Mo content. Furthermore, Mo-TiO2 revealed mesoporous architectures with a high surface area ranging between 170 and 260 m2 g-1, which is superior compared to previously reported Mo-doped TiO2. The performance of Mo-TiO2 was evaluated towards the adsorption of Rhodamine B (RhB). In contrast to TiO2, which revealed negligible adsorption for RhB, Mo-doped samples depicted rapid adsorption for RhB, with a rate that increased with the increase in Mo content. Additionally, Mo-TiO2 expressed enhanced adsorption kinetics for RhB compared to state-of-the-art adsorbents. The introduced synthesis procedure holds a grand promise for the versatile synthesis of metal-doped TiO2 nanostructures with outstanding physicochemical properties.

15.
Stem Cell Res Ther ; 13(1): 196, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35550006

ABSTRACT

BACKGROUND AND RATIONALE: Extracellular vesicles (EVs) are a potential cell-free regenerative medicine. Human amniotic epithelial cells (hAECs) are a viable source of cell therapy for diseases like bronchopulmonary dysplasia (BPD). However, little is known about the impact of gestational age of the donor on the quality of hAEC-derived EVs. AIMS: To determine the impact of gestational age on hAEC-derived EVs in experimental BPD. RESULTS: Term hAEC-derived EVs displayed a significantly higher density of surface epitopes (CD142 and CD133) and induced greater macrophage phagocytosis compared to preterm hAEC-EVs. However, T cell proliferation was more significantly suppressed by preterm hAEC-EVs. Using a model of experimental BPD, we observed that term but not preterm hAEC-EVs improved tissue-to-airspace ratio and septal crest density. While both term and preterm hAEC-EVs reduced the levels of inflammatory cytokines on postnatal day 7, the improvement in lung injury was associated with increased type II alveolar cells which was only observed in term hAEC-EV treatment group. Furthermore, only neonatal term hAEC-EVs reduced airway hyper-responsiveness, mitigated pulmonary hypertension and protected against right ventricular hypertrophy at 6 weeks of age. CONCLUSION: Term hAEC-EVs, but not preterm hAEC-EVs, have therapeutic efficacy in a mouse model of BPD-like lung injury. Therefore, the impact of donor criteria should be considered when applying perinatal cells-derived EV therapy for clinical use.


Subject(s)
Bronchopulmonary Dysplasia , Extracellular Vesicles , Lung Injury , Animals , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/therapy , Epithelial Cells , Extracellular Vesicles/metabolism , Female , Gestational Age , Humans , Infant, Newborn , Lung Injury/therapy , Mice , Pregnancy
16.
Anal Chem ; 94(21): 7460-7465, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35576511

ABSTRACT

We describe an innovative use for the recently reported fast lipid analysis technique (FLAT) that allows for the generation of MALDI tandem mass spectrometry data suitable for lipid A structure analysis directly from a single Gram-negative bacterial colony. We refer to this tandem MS version of FLAT as FLATn. Neither technique requires sophisticated sample preparation beyond the selection of a single bacterial colony, which significantly reduces overall analysis time (∼1 h), as compared to conventional methods. Moreover, the tandem mass spectra generated by FLATn provides comprehensive information on fragments of lipid A, for example, ester bonded acyl chain dissociations, cross-ring cleavages, and glycosidic bond dissociations, all of which allow the facile determination of novel lipid A structures or confirmation of expected structures. In addition to generating tandem mass spectra directly from single colonies, we also show that FLATn can be used to analyze lipid A structures taken directly from a complex biological clinical sample without the need for ex vivo growth. From a urine sample from a patient with an E. coli infection, FLATn identified the organism and demonstrated that this clinical isolate carried the mobile colistin resistance-1 gene (mcr-1) that results in the addition of a phosphoethanolamine moiety and subsequently resistance to the antimicrobial, colistin (polymyxin E). Moreover, FLATn allowed for the determination of the existence of a structural isomer in E. coli lipid A that had either a 1- or 4'-phosphate group modification by phosphoethanolamine generated by a change of bacterial culture conditions.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Colistin , Drug Resistance, Bacterial , Escherichia coli , Escherichia coli Infections/drug therapy , Humans , Lipid A , Microbial Sensitivity Tests
17.
Biofactors ; 48(5): 1166-1178, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35332953

ABSTRACT

This study aimed to investigate the possible usefulness of morin flavonoid in comparison to silymarin as a hepatic/neuronal-supportive agent with similar effects and higher bioavailability in a rat model of hepatic encephalopathy (HE). Morin effects on rat liver and brain were evaluated post-induction of HE by thioacetamide (TAA; 200 mg/kg/day for 3 successive days). Then, the serum activities of aspartate transaminase (AST) and alanine transaminase (ALT) together with ammonia concentration were estimated to assess the liver function. Also, the degree of brain effects was evaluated via the assessment of brain contents of reduced glutathione (GSH), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and interleukin (IL-1ß) together with glutathione peroxidase (GPx) activity. In addition, the apoptotic and inflammatory changes in brain and liver tissues were also assessed via immunohistochemical examination. Our findings revealed a promising effect of morin against HE complications; as it corrected the liver functions, attenuated the brain/liver tissue injuries, and reduced the apoptotic and inflammatory insults of HE on both organs. These effects are comparable to those of silymarin. Morin could be introduced as a promising hepato- and neuro-therapeutic adjuvant in HE-associated neuronal complications especially in cases like silymarin intolerance.


Subject(s)
Hepatic Encephalopathy , Silymarin , Alanine Transaminase , Ammonia/metabolism , Ammonia/pharmacology , Animals , Antioxidants/pharmacology , Aspartate Aminotransferases , Flavones , Flavonoids/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/metabolism , Liver , Malondialdehyde/metabolism , Oxidative Stress , Rats , Rats, Wistar , Silymarin/metabolism , Silymarin/pharmacology , Thioacetamide/metabolism , Thioacetamide/toxicity , Tumor Necrosis Factor-alpha/metabolism
18.
Life Sci ; 295: 120378, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35134437

ABSTRACT

The degree of neuroinflammation is correlated mainly with cognitive and motor dysfunctions associated with hepatic encephalopathy (HE). The current study was conducted to explore the possible protective potential of the antidiabetic drug; linagliptin (LNG; 10 or 20 mg/kg) against HE induced by thioacetamide (TAA) in rats. Animals received two consecutive intraperitoneal injections of TAA (200 mg/kg) on alternate days. Neurobehavioral tests were performed 24 h after the last injection, and rats were sacrificed 24 h later (48 h). The higher LNG dose more effectively protected against TAA-induced changes. Administration of LNG for 15 days before TAA notably mitigated TAA-induced acute liver injury and HE, as verified by the marked improvement in motor coordination, locomotor activity, and cognition function. LNG maintained both brain and liver weight indices and retracted the hyperammonemia with a prominent suppression in liver transaminases. This was accompanied by an evident modulation of hepatic and hippocampal oxidative stress markers; GSH and MDA. LNG attenuated both liver and hippocampal pro-inflammatory cytokine; IL-1ß while augmented the anti-inflammatory one; IL-10. It noticeably reduced hepatic and hippocampal COX-2 and TNF-α and maintained hepatic and brain architectures. It also induced a marked decrease in the inflammation-regulated transcription factor, C/EBP-ß, with a profound increase in hippocampi's anti-inflammatory chemokine, CX3CL1/Fractalkine. LNG modulated TAA-induced disturbances in hippocampal amino acids; glutamate, and GABA with a significant increase in hippocampal BDNF. In conclusion, the regulatory effect of LNG on neuroinflammatory signaling underlines its neuroprotective effect against progressive encephalopathy accompanying acute liver injury.


Subject(s)
Hepatic Encephalopathy/drug therapy , Linagliptin/pharmacology , Animals , Behavior, Animal , Brain/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Chemokine CX3CL1/metabolism , Cytokines/metabolism , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/physiopathology , Inflammation/metabolism , Liver/metabolism , Liver Function Tests , Male , Neuroinflammatory Diseases/drug therapy , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Rats , Rats, Wistar , Thioacetamide/pharmacology , Tumor Necrosis Factor-alpha/metabolism
19.
Neurotherapeutics ; 18(4): 2664-2681, 2021 10.
Article in English | MEDLINE | ID: mdl-34664178

ABSTRACT

Depression is an overwhelming health concern, and many patients fail to optimally respond to available standard therapies. Neuroplasticity and blood-brain barrier (BBB) integrity are the cornerstones of a well-functioning central nervous system, but they are vulnerable to an overly active NLRP3 inflammasome pathway that can also indirectly trigger the release of ET-1 and contribute to the ET system disturbance, which further damages stress resilience mechanisms. Here, the promising yet unexplored antidepressant potential of dapagliflozin (Dapa), a sodium-glucose co-transporter-2 inhibitor, was investigated by assessing its role in the modulation of the NLRP3 inflammasome pathway and ETBR signal transduction, and their impact on neuroplasticity and BBB integrity in an animal model of depression. Dapa (1 mg/kg/day; p.o.) with and without BQ-788 (1 mg/kg/day; i.p.), a specific ETBR blocker, were administered to adolescent male Wistar rats exposed to a 5-week chronic unpredictable stress protocol. The depressive animals demonstrated marked activation of the NLRP3 inflammasome pathway (NF-κB/NLRP3/caspase-1/IL/TNF-α), which was associated with both peripheral and central inflammatory responses. The ET system was disrupted, with noticeable reduction in miR-125a-5p and ETBR gene expression. Cortical ZO-1 expression was downregulated under the influence of NLRP3/TNF-α/miR-501-3p signaling, along with a prominent reduction in hippocampal BDNF and synapsin-1. With ETBR up-regulation being a cornerstone outcome, Dapa administration efficiently created an overall state of resilience, improved histopathological and behavioral variables, and preserved BBB function. These observations were further verified by the results obtained with BQ-788 co-administration. Thus, Dapa may exert its antidepressant action by reinforcing BBB integrity and promoting neuroplasticity through manipulation of the NLRP3/ET-1/ETBR/BDNF/ZO-1 axis, with a significant role for ETBR signaling. Graphical illustration for the proposed mechanisms of the anti-depressant potential of Dapa. Dapa suppressed NLRP3 inflammasome activation and assembly with subsequent inhibition of pro-inflammatory ILs. This results in attenuation of neuro-inflammation, BBB disruption, glial cell activation, TNF-α and ET-1 release, and the enhanced production of neurotrophins. The role of ETBR signaling was emphasized; Dapa possibly augmented ETBR expression, which is thought to boost neurotrophins production. The ETBR blocker, BQ-788, suppressed most of the positive outcomes of Dapa. Finally, miR-125a-5p and miR-501-3p that played major roles in these pathological pathways were modulated by Dapa. It is not yet clear whether Dapa has a direct or rather indirect effect on their expression. BBB, blood-brain barrier; Dapa, dapagliflozin; ET-1, endothelin-1; ETBR, endothelin B receptor; IL, interleukin; NF-κB, nuclear factor kappa B; NLRP3, nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3; TNF-α, tumor necrosis factor-α. Created with BioRender.com.


Subject(s)
Depression , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Sodium-Glucose Transporter 2 Inhibitors , Animals , Depression/drug therapy , Depression/metabolism , Inflammasomes/metabolism , Male , MicroRNAs/genetics , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Rats, Wistar , Signal Transduction , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
20.
J Am Soc Mass Spectrom ; 32(10): 2499-2504, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34469144

ABSTRACT

We investigated the product ion spectra of [M + Na]+ from diterpene diester species and low molecular mass metabolites analyzed by electrospray ionization (ESI). Mainly, the formation of protonated salt structures was proposed to explain the observed neutral losses of carboxylic acids. It also facilitates understanding sodium retention on product ions or on neutral losses. In addition, the occurrence of consecutive carboxylic acid losses is rather unexpected under resonant excitation conditions. Quantum calculation demonstrated that the exothermic character of such neutral losses can represent a relevant explanation. There is no doubt that the formation and role of the protonated salt structures will be helpful for a better understanding and software-assisted interpretation of tandem mass spectra from small molecules, especially in the ever-growing metabolomics field.


Subject(s)
Diterpenes/analysis , Diterpenes/chemistry , Sodium/chemistry , Tandem Mass Spectrometry/methods , Metabolomics
SELECTION OF CITATIONS
SEARCH DETAIL