Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(12): 124901, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36586892

ABSTRACT

We demonstrate multiplexed readout of 43 transition edge sensor (TES) bolometers operating at 90 mK using a frequency division multiplexing (FDM) readout chain with bias frequencies ranging from 1 to 3.5 MHz and a typical frequency spacing of 32 kHz. We improve the previously reported performance of our FDM system by two important steps. First, we replace the coplanar wires with microstrip wires, which minimize the cross talk from mutual inductance. From the measured electrical cross talk (ECT) map, the ECT of all pixels is carrier leakage dominated. Only five pixels show an ECT level higher than 1%. Second, we reduce the thermal response speed of the TES detectors by a factor of 20 by increasing the heat capacity of the TES, which allows us to bias all TES detectors below 50% in transition without oscillations. We compare the current-voltage curves and noise spectra of the TESs measured in single-pixel mode and multiplexing mode. We also compare the noise equivalent power (NEP) and the saturation power of the bolometers in both modes, where 38 pixels show less than 10% difference in NEP and 5% difference in saturation power when measured in the two different modes. The measured noise spectrum is in good agreement with the simulated noise based on measured parameters from an impedance measurement, confirming that our TES is dominated by phonon noise.

2.
Rev Sci Instrum ; 92(1): 014710, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33514257

ABSTRACT

We have characterized and mapped the electrical cross talk (ECT) of a frequency division multiplexing (FDM) system with a transition edge sensor (TES) bolometer array, which is intended for space applications. By adding a small modulation at 120 Hz to the AC bias voltage of one bolometer and measuring the cross talk response in the current noise spectra of the others simultaneously, we have for the first time mapped the ECT level of 61 pixels with a nominal frequency spacing of 32 kHz in a 61 × 61 matrix and a carrier frequency ranging from 1 MHz to 4 MHz. We find that about 94% of the pixels show an ECT level of less than 0.4%. Only the adjacent pixels reach this level, and the ECT for the rest of the pixels is less than 0.1%. We also observe higher ECT levels, up to 10%, between some of the pixels, which have bundled long, parallel coplanar wires connecting TES bolometers to inductor-capacitor filters. In this case, the high mutual inductances dominate. To mitigate this source of ECT, the coplanar wires should be replaced by microstrip wires in the array. Our study suggests that an FDM system can have a relatively low ECT level, e.g., around 0.4% if the frequency spacing is 30 kHz. Our results successfully demonstrate a low electrical cross talk for a space FDM technology.

3.
Phys Rev Lett ; 116(24): 241101, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27367377

ABSTRACT

We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

4.
Eur Phys J C Part Fields ; 75(6): 269, 2015.
Article in English | MEDLINE | ID: mdl-26120280

ABSTRACT

Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with [Formula: see text] eV by analyzing cosmic rays with energies above [Formula: see text] eV arriving within an angular separation of approximately 15[Formula: see text]. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.

5.
Phys Rev Lett ; 109(6): 062002, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-23006259

ABSTRACT

We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505±22(stat)(-36)(+28)(syst)] mb is found.

SELECTION OF CITATIONS
SEARCH DETAIL