Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 243
Filter
1.
Daru ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136927

ABSTRACT

BACKGROUND: Nilotinib (NIL) is a prescription medication employed in the treatment of specific types of leukemia, namely chronic myelogenous leukemia (CML). The determination of NIL levels in patients undergoing treatment for CML is of paramount importance for effective management of treatment and toxicity. Also, monitoring and controlling its level in wastewater sources could help scientists to identify potential hotspots of contamination and take appropriate measures to mitigate their impact on the environment and public health. OBJECTIVES: This study presents a D-µ-SPE technique utilizing two MOFs as adsorbents for the efficient detection of nilotinib in plasma and wastewater samples for the first time. METHODS: Two highly effective MOFs, MIL-101(Fe) and MIL-53(Al), were synthesized and applied as dispersive micro-solid phase extraction (D-µ-SPE) adsorbents for the extraction of nilotinib coupled with HPLC-UV in a short time of analysis. Experimental parameters affecting extraction efficacy such as adsorbent amount, ionic strength, pH value, adsorption-desorption time and type of elution solvent, were optimized. RESULTS: Under optimal experimental conditions, the linear dynamic was achieved in the range of 0.25-5.00 µg/mL in human plasma and 0.01-0.20 µg/mL in wastewater. The extraction recovery was in the range of 89.18-91.53% and 94.39-99.60% for nilotinib and MIL-101(Fe) and also 91.22-97.35% and 98.14-100.78% for nilotinib and MIL-53(Al) from human plasma and wastewater respectively. CONCLUSION: HPLC-UV determination of nilotinib after the D-µ-SPE method showed acceptable accuracy and precision in both plasma and wastewater. In comparison between the two adsorbents, the extraction procedure was easier and faster with MIL-53(Al) as the adsorbent.

2.
Article in English | MEDLINE | ID: mdl-39053110

ABSTRACT

ß-propiolactone (BPL) is an alkylating agent used for inactivation of biological samples such as vaccines. Due to its known carcinogenic properties, complete hydrolysis of BPL is essential, and the detection of trace amounts is crucial. In this study a novel High-Performance Liquid Chromatography-Ultraviolet (HPLC-UV) method was developed. Rhodamine B hydrazide (RBH) was synthesized and utilized as a derivatizing reagent to react with BPL. The reaction was optimized in a weak acidic solution, resulting in a high yield. The separation of the RBH-derivatized BPL was achieved on a C8 column and detected by a UV detector at a wavelength of 560 nm. The method's validation demonstrated a high linearity (r2 > 0.99) over a concentration range of 0.5-50 µg/mL, with detection and quantification limits of 0.17 µg/mL and 0.5 µg/mL, respectively. The average recovery of samples was 85.20 % with a relative standard deviation (RSD) of 1.75 %. This method was successfully applied for BPL residue analysis in inactivated COVID-19 vaccines. This novel derivatization method offers a promising solution for monitoring BPL residues in the vaccine production process for quality control purposes and compliance with regulatory standards.


Subject(s)
COVID-19 Vaccines , Limit of Detection , Propiolactone , Rhodamines , Chromatography, High Pressure Liquid/methods , Propiolactone/chemistry , Rhodamines/chemistry , Reproducibility of Results , COVID-19 Vaccines/chemistry , Vaccines, Inactivated/chemistry , Vaccines, Inactivated/analysis , Linear Models , SARS-CoV-2/chemistry , Humans , Hydrazines/chemistry , Hydrazines/analysis
3.
J Agric Food Chem ; 72(28): 15427-15448, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38967261

ABSTRACT

With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungi/drug effects , Fungi/growth & development , Pyrazoles/chemistry , Pyrazoles/pharmacology , Drug Design , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pyrimidines/chemistry , Pyrimidines/pharmacology , Molecular Structure , Imidazoles/chemistry , Imidazoles/pharmacology
4.
J Pharm Sci ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508339

ABSTRACT

PURPOSE: In the present study, biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles (NPs) containing insulin were loaded in sodium alginate/jeffamine (ALG/jeff) hydrogel for prolonged delivery of insulin. The main aim of this work was to fabricate an efficient insulin delivery system to improve patient adherence by decreasing the repetition of injections. METHODS: Swelling and morphological properties and crosslinking efficiency of ALG/jeff hydrogel were assessed. The composite hydrogel was prepared by adding PHBV NPs to ALG/jeff hydrogel concurrently with crosslinking process. The morphology and loading capacity of composite hydrogel were analyzed. RESULTS: Circular dichroism measurement demonstrated that insulin remains stable following fabrication process. The release profile exhibited 54.6 % insulin release from composite hydrogel within 31 days with minor initial burst release equated to nanoparticles and hydrogels. MTT cell viability analysis was performed by applying L-929 cell line and no cytotoxic effect was observed. CONCLUSIONS: Favorable results clearly introduced fabricated composite hydrogel as an excellent candidate for drug delivery systems and also paves the route for prolonged delivery systems of other proteins.

5.
Int J Pharm ; 655: 124024, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38537920

ABSTRACT

Controlling the drug release and restricting its presence in healthy organs is extremely valuable. In this study, mesoporous silica nanoparticles (MSN) as the core, loaded with paclitaxel (PTX), were coated with a non-porous silica shell functionalized with disulfide bonds. The nanoparticles were further coated with polyethylene glycol (PEG) via disulfide linkages. We analyzed the physicochemical properties of nanoparticles, including hydrodynamic size via Dynamic Light Scattering (DLS), zeta potential, X-ray Diffraction (XRD) patterns, Fourier-Transform Infrared (FTIR) spectra, and imaging through Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The drug release profile in two distinct glutathione (GSH) concentrations of 2 µM and 10 µM was measured. The cellular uptake of nanoparticles by MCF-7 cell line was determined using Confocal Laser Scanning Microscopy (CLSM) images and flow cytometry. Furthermore, the cell viability and the capability of nanoparticles to induce apoptosis in MCF-7 cell line were studied using the MTT assay and flow cytometry, respectively. Our investigations revealed that the release of PTX from the drug delivery system was redox-responsive. Also, results indicated an elevated level of cellular uptake and efficient induction of apoptosis, underscoring the promising potential of this redox-responsive drug delivery system for breast cancer therapy.


Subject(s)
Breast Neoplasms , Nanoparticles , Humans , Female , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Breast Neoplasms/drug therapy , Silicon Dioxide/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Glutathione/chemistry , Oxidation-Reduction , Disulfides , Drug Carriers/chemistry , Porosity
6.
Article in English | MEDLINE | ID: mdl-38319919

ABSTRACT

In the category of sports supplements, whey protein powder is one of the popular supplements for muscle building applications. Therefore, verification of the sport supplements as authentic products has become a universal concern. This work aimed to propose vibrational spectroscopy including near infrared (NIR) and infrared (IR) as rapid and non-destructive testing tools for the detection and quantification of maltodextrin, milk powder and milk whey powder in whey protein supplements. Initially, principal component analysis was applied to data for pattern recognition and the results displayed a fine pattern of discrimination. Partial least square discrimination analysis (PLS-DA) and K-nearest neighbours (KNN) were exploited as supervised method modelling classification. This process was done in order to respond to two vital questions whether the sample is adulterated or not and what is the kind of adulteration. PLS-DA showed better classification results rather than KNN according to the figure of merits of the model. Partial least square regression (PLSR) was employed on pre-treated spectra to quantify the amount of adulteration in sport whey supplements. Eventually, it seems vibrational spectroscopy could be implemented as a simple, and low-cost analysis method for the detection and quantification of mentioned adulterants in whey protein supplements.


Subject(s)
Food Contamination , Whey , Whey/chemistry , Whey Proteins/analysis , Powders , Food Contamination/analysis , Spectrum Analysis , Least-Squares Analysis
7.
Recent Adv Drug Deliv Formul ; 18(1): 61-76, 2024.
Article in English | MEDLINE | ID: mdl-38362679

ABSTRACT

PURPOSE: The primary objective of this study was to optimize formulation variables and investigate the in vitro characteristics of fluticasone propionate (FP)-loaded mixed polymeric micelles, which were composed of depolymerized chitosan-stearic acid copolymer (DC-SA) in combination with either tocopheryl polyethylene glycol succinate or dipalmitoylphosphatidylcholine for pulmonary drug delivery. METHODS: A D-optimal design was employed for the optimization procedure, considering lipid/ polymer ratio, polymer concentration, drug/ polymer ratio, and lipid type as independent variables. Dependent variables included particle size, polydispersion index, zeta potential, drug encapsulation efficiency, and loading efficiency of the polymeric micelles. Additionally, the nebulization efficacy and cell viability of the optimal FP-loaded DC-SA micellar formulations were evaluated. RESULTS: The mixed polymeric micelles were successfully prepared with properties falling within the desired ranges, resulting in four optimized formulations. The release of FP from the optimal systems exhibited a sustained release profile over 72 hours, with 70% of the drug still retained within the core of the micelles. The nebulization efficiency of these optimal formulations reached up to 63%, and the fine particle fraction (FPF) ranged from 41% to 48%. Cellular viability assays demonstrated that FP-loaded DC-SA polymeric micelles exhibited lower cytotoxicity than the free drug but were slightly more cytotoxic than empty mixed micelles. CONCLUSION: In conclusion, this study suggests that DC-SA/ lipid mixed micelles have the potential to serve as effective carriers for nebulizing poorly soluble FP.


Subject(s)
Cell Survival , Chitosan , Fluticasone , Micelles , Stearic Acids , Chitosan/chemistry , Stearic Acids/chemistry , Humans , Fluticasone/administration & dosage , Fluticasone/pharmacology , Fluticasone/chemistry , Cell Survival/drug effects , Particle Size , Administration, Inhalation , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation , Nebulizers and Vaporizers , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/pharmacology , Bronchodilator Agents/chemistry
8.
Biomater Adv ; 158: 213771, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38271801

ABSTRACT

The efficacy of injectable micellar carriers is hindered due to the disassembly of micelles into free surfactants in the body, resulting in their dilution below the critical micelle concentration (CMC). Copolymer micelles were developed to address this issue, containing a superhydrophilic zwitterionic block and a superhydrophobic block with a disulfide bond, which exhibited a CMC lower than conventional micellar carriers. Cleavable copolymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) zwitterion and polycaprolactone CHLZW as the shell, with gold nanoparticles as their core, were studied to deliver doxorubicin to tumor cells while reducing the side effect of the free cytotoxic agent. The research focused on the impact of gold nanoparticles present in targeted TMT-micelles core on stability and in vivo bioavailability and sonotoxicity of the nanoparticles, as well as their synergistic effect on targeted chemotherapy. The nanomicelles prepared in this study demonstrated excellent biocompatibility and responsiveness to stimuli. PCL-SS-MPC nanomicelles displayed drug release in response to GSH and pH, resulting in high DOX release at GSH 10 mM and pH 5. Our findings, supported by MTT, flow cytometry, and confocal laser scanning microscopy, demonstrated that AuS-PM-TMTM-DOX micelles effectively induced apoptosis and enhanced cellular uptake in MCF7 and MDA-MB231 cell lines. The cytotoxic effects of AuS-PM-DOX/US on cancer cells were approximately 38 % higher compared to AuS-PM-DOX samples at a concentration of IC50 0.68 nM. This increase in cellular toxicity was primarily attributed to the promotion of apoptosis. The introduction of disulfide linkages in AuSNPs resulted in increased ROS production when exposed to ultrasound stimulation, due to a reduction in GSH levels. Compared to other commercially available nanosensitizers such as titanium dioxide, exposure of AuS-PM to ultrasound radiation (1.0 W/cm, 2 min) significantly enhanced cavitation effects and resulted in 3 to 5 times higher ROS production. Furthermore, laboratory experiments using human breast cancer cells (MDA-MB-231, MCF7) demonstrated that the toxicity of AuS-PM in response to ultrasound waves is dose-dependent. The findings of this study suggest that this formulated nanocarrier holds great potential as a viable treatment option for breast cancer. It can induce apoptosis in cancer cells, reduce tumor size, and display notable therapeutic efficacy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Metal Nanoparticles , Humans , Female , Micelles , Breast Neoplasms/drug therapy , Gold , Reactive Oxygen Species , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Antineoplastic Agents/pharmacology , Polymers , Oxidation-Reduction , Hydrogen-Ion Concentration , Disulfides
9.
Int J Biol Macromol ; 257(Pt 1): 128493, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043661

ABSTRACT

A novel, dual-faced, and hierarchical type of Janus hybrid structures (JHSs) was assembled through an in situ growing of lipase@cobalt phosphate sheets on the laccase@copper phosphate sponge-like structures. The chemical and structural information of prepared JHSs was investigated by Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction analysis (XRD). The catalytic activity, storage stability, and reusability of JHSs were then investigated. The SEM-EDX analysis clearly confirmed the asymmetric morphology of the fabricated JHSs with two distinct metal distributions. Under optimized synthesis conditions, the prepared JHSs showed 97.8 % and 100 % of laccase and lipase activity, respectively. Compared to the free biocatalysts, the immobilization resulted in ~ a 2-fold increase in laccase and lipase stability at temperatures of >40 °C. The fabricated JHSs maintained 61 % and 90 % of their original laccase and lipase activity upon 12 successive repetition cycles. Up to 80 % of Reactive Blue-19 (RB-19), an anthraquinone-based vinyl sulphone dye, was removed after 5 h treatment with the prepared JHSs (50 % higher than the free forms of laccase and lipase). The dye removal data fitted very well on the pseudo-second-order kinetic model with a rate constant of 0.8 g mg-1 h-1. Following the bioremoval process, bacterial toxicity also decreased by about 70 %. Therefore, the prepared JHSs provide a facile and sustainable approach for the decolorization, biotransformation, and detoxification of RB-19 by integrating enzymatic oxidation and hydrolysis.


Subject(s)
Enzymes, Immobilized , Laccase , Enzymes, Immobilized/chemistry , Laccase/chemistry , Lipase , Anthraquinones , Phosphates
10.
Sci Rep ; 13(1): 12844, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553431

ABSTRACT

Studying the edge states of a topological system and extracting their topological properties is of great importance in understanding and characterizing these systems. In this paper, we present a novel analytical approach for obtaining explicit expressions for the edge states in the Kane-Mele model within a ribbon geometry featuring armchair boundaries. Our approach involves a mapping procedure that transforms the system into an extended Su-Schrieffer-Heeger model, specifically a two-leg ladder, in momentum space. Through rigorous derivation, we determine various analytical properties of the edge states, including their wave functions and energy dispersion. Additionally, we investigate the condition for topological transition by solely analyzing the edge states, and we elucidate the underlying reasons for the violation of the bulk-edge correspondence in relatively narrow ribbons. Our findings shed light on the unique characteristics of the edge states in the quantum spin Hall phase of the Kane-Mele model and provide valuable insights into the topological properties of such systems.

11.
Daru ; 31(1): 1-12, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37209247

ABSTRACT

BACKGROUND: To have a better and longer effect, botulinum neurotoxin (BoNT) is injected several times in a treatment course, which could increase side effects and cost. Some of the most cutting-edge strategies being investigated for proteins to their physiologic targets involve the reformulation of BoNT based on peptide-based delivery systems. For this purpose, cell-penetrating peptides (CPPs) are of particular interest because of their capacity to cross the biological membranes. OBJECTIVES: A short and simple CPP sequence was used as a carrier to create nanocomplex particles from BoNT/A, with the purpose of increasing toxin entrapment by target cells, reducing diffusion, and increasing the duration of the effect. METHOD: CPP-BoNT/A nanocomplexes were formed by polyelectrolyte complex (PEC) method, considering the anionic structure of botulinum toxin and the cationic CPP sequence. The cellular toxicity, and absorption profile of the complex nanoparticles were evaluated, and the digit abduction score (DAS) was used to assess the local muscle weakening efficacy of BoNT/A and CPP-BoNT/A. RESULTS: The provided optimized polyelectrolyte complex nanoparticles had a 244 ± 20 nm particle size and 0.28 ± 0.04 PdI. In cellular toxicity, CPP-BoNT/A nanocomplexes as extended-release formulations of BoNT/A showed that nanocomplexes had a more toxic effect than BoNT/A. Furthermore, the comparison of weakening effectiveness on muscle was done among nanoparticles and free toxin on mice based on the digit abduction score (DAS) method, and nanocomplexes had a slower onset effect and a longer duration of action than toxin. CONCLUSION: Using PEC method allowed us to form nanocomplex from proteins, and peptides without a covalent bond and harsh conditions. The muscle-weakening effect of toxin in CPP-BoNT/A nanocomplexes showed acceptable efficacy and extended-release pattern.


Subject(s)
Botulinum Toxins, Type A , Cell-Penetrating Peptides , Animals , Mice , Botulinum Toxins, Type A/metabolism , Botulinum Toxins, Type A/pharmacology , Cell-Penetrating Peptides/pharmacology , Polyelectrolytes
12.
Sci Rep ; 13(1): 2578, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36782003

ABSTRACT

In the present study, a series of aryl-substituted thioqunoline conjugated to thiosemicarbazide were rationally designed and synthesized. The formation of target compounds was confirmed by spectral characterization techniques such as IR, 1H-NMR, 13C-NMR, ESI-MS, and elemental analysis. Among the synthesized derivatives, compound 10g bearing para-chlorophenyl moiety was proved to be the most potent tyrosinase inhibitor with an IC50 value of 25.75 ± 0.19 µM. Compound 10g as the most potent derivative exhibited a noncompetitive inhibition pattern against tyrosinase in the kinetic study. Furthermore, the in silico cavity detection, as well as the molecular docking assessments, were performed to follow the behavior of 10g within the proposed binding site. Besides, the toxicity of 10g and its potency to reduce the melanin content on A375 cell lines were also measured. Consequently, aryl-substituted thioqunolines conjugated to thiosemicarbazide might be a promising candidate in the cosmetics, medicine, and food industry as tyrosinase inhibitors.


Subject(s)
Agaricales , Enzyme Inhibitors , Monophenol Monooxygenase , Agaricales/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Melanins , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Structure-Activity Relationship
13.
Iran J Pharm Res ; 22(1): e140450, 2023.
Article in English | MEDLINE | ID: mdl-38444711

ABSTRACT

Background: Neuroinflammation and oxidative stress are critical factors involved in the pathogenesis of Parkinson's disease (PD), the second most common progressive neurodegenerative disease. Additionally, lipid peroxidation end products contribute to inflammatory responses by activating pro-inflammatory genes. Lipid peroxidation occurs as a result of either the overproduction of intracellular reactive oxygen species (ROS) or the reaction of cyclooxygenases (COXs). Objectives: In this study, we examined the role of 1,5-diaryl pyrrole derivatives against the neurotoxic effects of 6-hydroxydopamine (6-OHDA) in a cellular model of PD. Methods: PC12 cells were pre-treated with compounds 2-(4-chlorophenyl)-5-methyl-1-(4-(trifluoromethoxy)phenyl)-1H-pyrrole (A), 2-(4-chlorophenyl)-1-(4-methoxyphenyl)-5-methyl-1H-pyrrole (B), and 1-(2-chlorophenyl)-2-(4-chlorophenyl)-5-methyl-1H-pyrrole (C), respectively, 24 h before exposure to 6-OHDA. We conducted various assays, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), ROS, and lipid peroxidation assays, Hoechst staining, Annexin V/PI, Western blotting analysis and ELISA method, to assess the neuroprotective effects of pyrrole derivatives on 6-OHDA-induced neurotoxicity. Results: Our results demonstrated that apoptosis induction was inhibited by controlling the lipid peroxidation process in the in vitro model following pre-treatment with compounds A, B, and, somehow, C. Furthermore, compounds A and C likely act by suppressing the COX-2/PGE2 pathway, a mechanism not attributed to compound B. Conclusions: These findings suggest that the novel synthetic pyrrolic derivatives may be considered promising neuroprotective agents that can potentially prevent the progression of PD.

14.
Epigenomics ; 14(20): 1269-1280, 2022 10.
Article in English | MEDLINE | ID: mdl-36377555

ABSTRACT

Aim: To identify the DNA methylation status of related genes in major depressive disorder following selective serotonin-reuptake inhibitor treatment. Materials & methods: 45 patients with major depressive disorder and 45 healthy volunteers were considered experimental and control groups, respectively. High-resolution melting real-time PCR was implemented to evaluate DNA methylation. Results: After 100 days of selective serotonin-reuptake inhibitor treatment, methylation of promoter CpG sites of BDNF, NR3C1, FKBP5 and SLC6A4 was significantly reduced. Compared with before treatment, patients' Hamilton Depression Rating Scale scores were significantly reduced after selective serotonin-reuptake inhibitor treatment (p ≤ 0.0001). Conclusion: Based on the proven effect of antidepressants on DNA methylation and gene expression, these medications can improve the treatment process and reduce depression scores after treatment.


Subject(s)
DNA Methylation , Depressive Disorder, Major , Selective Serotonin Reuptake Inhibitors , Humans , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Promoter Regions, Genetic , Receptors, Glucocorticoid/genetics , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/therapeutic use
15.
Mini Rev Med Chem ; 22(19): 2486-2561, 2022.
Article in English | MEDLINE | ID: mdl-35339175

ABSTRACT

Pyrrole is one of the most widely used heterocycles in the pharmaceutical industry. Due to the importance of pyrrole structure in drug design and development, herein, we tried to conduct an extensive review of the bioactive pyrrole-based compounds reported recently. The bioactivity of pyrrole derivatives varies, so in the review, we categorized them based on their direct pharmacologic targets. Therefore, readers are able to find the variety of biological targets for pyrrole-containing compounds easily. This review explains around seventy different biologic targets for pyrrole-based derivatives, so it is helpful for medicinal chemists in the design and development of novel bioactive compounds for different diseases. This review presents an extensive, meaningful structure-activity relationship for each reported structure as much as possible. The review focuses on papers published between 2018 and 2020.


Subject(s)
Biological Products , Chemistry, Pharmaceutical , Drug Design , Pyrroles/chemistry , Pyrroles/pharmacology , Structure-Activity Relationship
16.
Food Sci Nutr ; 10(2): 460-469, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35154682

ABSTRACT

The aim of this study was to analyze the effect of cooking method on thiamin (B1), riboflavin (B2), and pyridoxine (B6) vitamin content of rice samples consumed in Iran by using high-performance liquid chromatography technique. The amount of B1, B2, and B6 obtained ranged from 2.98 to 15.89, 1.15 to 22.19, and 0.96 to 4.44 µg/g, respectively, for the boiling method. In the traditional method, these vitamins had a concentration between 4.09 and 29.55, 4.87 and 16.19, and 1.52 and 12.18 µg/g, respectively. However, limit of detection (LOD) values for B1, B2, and B6 vitamins were 0.159, 0.090, and 0.041 µg/ml, respectively. Multivariate methods and heatmap visualization were applied to estimate the correlation among the type and amount of vitamins and cooking methods. According to heatmap findings, B1 and B6 vitamins and the cooking method had the closest accessions, representing that this variable had similar trends. Nevertheless, it can be concluded that the traditional cooking method can maintain more vitamins in rice samples.

17.
Daru ; 30(1): 29-37, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35040104

ABSTRACT

BACKGROUND: Benzimidazole derivatives are widely used to design and synthesize novel bioactive compounds. There are several approved benzimidazole-based drugs on the market. OBJECTIVES: In this study, we aimed to design and synthesize a series of novel benzimidazole derivatives 8a-n that are urease inhibitors. METHODS: All 8a-n were synthesized in a multistep. To determine the urease inhibitory effect of 8a-n, the urease inhibition kit was used. The cytotoxicity assay of 8a-n was determined using MTT method. Molecular modelling was determined using autodock software. RESULTS: All 8a-n were synthesized in high yield, and their structures were determined using 1H-NMR, 13C-NMR, MS, and elemental analyses. In compared to thiourea and hydroxyurea as standards (IC50: 22 and 100 µM, respectively), all 8a-n had stronger urease inhibition activity (IC50: 3.36-10.81 µM). With an IC50 value of 3.36 µM, 8e had the best enzyme inhibitory activity. On two evaluated cell lines, the MTT cytotoxicity experiment revealed that all 8a-n have IC50 values greater than 50 µM. Finally, a docking investigation revealed a plausible way of interaction between the 8e and 8d and the enzyme's active site's key residues. CONCLUSION: The synthesized benzimidazole derivatives exhibit high activity, suggesting that further research on this family of compounds would be beneficial to finding a potent urease inhibitor.


Subject(s)
Enzyme Inhibitors , Urease , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Urease/metabolism
18.
Iran J Pharm Res ; 21(1): e129251, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36942064

ABSTRACT

Background: Proteolysis-targeting chimera (PROTAC) is a bifunctional molecule comprising a ligand to recognize the targeted protein to be degraded. Objectives: To use the advantages of the PROTAC technique, we have synthesized novel compounds to degrade inosine monophosphate dehydrogenase (IMPDH) by the proteasome system. Methods: We describe the synthesis of new PROTACs based on a combination of mycophenolic acid (MPA) as the potent IMPDH inhibitor and pomalidomide as a ligand of E3 ubiquitin ligase via linkers formed from Cu(I)-catalyzed cycloaddition reaction. Results: All synthesized compounds were investigated against Jurkat cells as acute T-cell leukemia and were potent apoptosis inducers at 50 nM. Conclusion: The effect of compound 2 in 0.05 µM on IMPDH degradation can be almost prevented by competition with bortezomib as the proteasome inhibitor at 0.1 and 0.5 µM.

19.
Anticancer Agents Med Chem ; 22(10): 2011-2025, 2022.
Article in English | MEDLINE | ID: mdl-34702157

ABSTRACT

BACKGROUND: Tubulin inhibitors have proved to be a promising treatment against cancer. Tubulin inhibitors target different areas in microtubule structure to exert their effects. The colchicine binding site (CBS) is one of them for which there is no FDA-approved drug yet. This makes CBS a desirable target for drug design. METHODS: Primary virtual screening is done by developing a possible pharmacophore model of colchicine binding site inhibitors of tubulins, and 2,3-diphenylquinoxaline is chosen as a lead compound to synthesis. In this study, 28 derivatives of 2,3-diphenylquinoxalines are synthesized, and their cytotoxicity is evaluated by the MTT assay in different human cancer cell lines, including AGS (Adenocarcinoma gastric cell line), HT-29 (Human colorectal adenocarcinoma cell line), NIH3T3 (Fibroblast cell line), and MCF-7 (Human breast cancer cell). RESULTS: Furthermore, the activity of the studied compounds was investigated using computational methods involving molecular docking of the 2,3-diphenylquinoxaline derivatives to ß-tubulin. The results showed that the compounds with electron donor functionalities in positions 2 and 3 and electron-withdrawing groups in position 6 are the most active tubulin inhibitors. CONCLUSION: Apart from the high activity of the synthesized compounds, the advantage of this report is the ease of the synthesis, work-up, and isolation of the products in safe, effective, and high-quality isolated yields.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Animals , Antineoplastic Agents/chemistry , Binding Sites , Cell Line, Tumor , Cell Proliferation , Colchicine/chemistry , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Docking Simulation , Molecular Structure , NIH 3T3 Cells , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemistry
20.
Neurotoxicology ; 87: 182-187, 2021 12.
Article in English | MEDLINE | ID: mdl-34624384

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory disease with demyelinated lesions in the central nervous system caused by genetic and environmental factors. DNA methylation as an epigenetic change influenced by environmental factors, including heavy metals has been implemented in MS disease. We investigated the correlation of DNA methylation changes in APOE and ACKR3 genes in MS patients and the possible association with blood concentration of arsenic (As), cadmium (Cd) and lead (Pb) as major heavy metal pollutants. This study included 69 relapsing-remitting multiple sclerosis (RR-MS) patients and 69 age/gender-matched healthy subjects. The HRM real-time PCR method was used to investigate the changes in DNA methylation and heavy metal concentrations were measured by electrothermal atomic absorption spectrometry. Our results showed that the methylation pattern in the ACKR3 gene of the patient group was more hypomethylated, while in the case of the APOE gene, this pattern was more towards hypermethylation compared to healthy subjects. Moreover, the blood levels of As and Cd metals, but not Pb, were significantly higher in the patient group compare to the control group (p ≤ 0.05). The data indicate that the increase in expression of ACKR3 gene by hypomethylation and the decrease in expression of APOE gene via hypermethylation are possibly involved in the onset and progression of inflammatory processes in MS patients. The level of As can also lead to hypomethylation by disrupting the methylation patterns of the ACKR3 gene, resulting in increased expression in MS patients. Finally, we have shown that epigenetic changes can be an important factor in increasing and decreasing the expression of genes involved in the onset and/or progression of inflammatory processes in MS. Furthermore, exposure to heavy metals, especially As, by changing the natural patterns of DNA methylation can be effective in this disease.


Subject(s)
Apolipoproteins E/genetics , DNA Methylation/drug effects , Metals, Heavy/toxicity , Multiple Sclerosis, Relapsing-Remitting/genetics , Receptors, CXCR/genetics , Adult , Arsenic/blood , Arsenic/toxicity , Cadmium/blood , Cadmium/toxicity , Case-Control Studies , Female , Genes/genetics , Humans , Male , Metals, Heavy/blood , Multiple Sclerosis, Relapsing-Remitting/metabolism , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL