Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Food Chem ; 420: 136122, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37059019

ABSTRACT

Herein, a composite of polyacrylonitrile (PAN)/agar/silver nanoparticles (AgNPs) electrospun nanofibers was fabricated and applied as an efficient sorbent for thin-film micro-extraction (TFME) of five metal ions followed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Incorporating agar into the nanofibers followed by in situ photo-reductive reaction under UV-lamp resulted in highly uniform dispersion of AgNPs in the nanofibers. Under the optimized conditions, agreeable linearity was acquired in the range of 0.5-250.0 ng mL-1 (R2 ≥ 0.9985). The LODs (based on S/N = 3) were attained in the range of 0.2 to 0.5 ng mL-1. The relative standard deviations (RSDs) were between 4.5% and 5.6% (intra-day, n = 5) and 5.3%-5.9% (inter-day, n = 3) for three sequential days. The developed method was investigated with water and rice samples, and recoveries (93.9-98.0%) indicated that the PAN/agar/AgNPs could be a promising film for the adsorption of heavy metal ions in varied samples.


Subject(s)
Metal Nanoparticles , Metals, Heavy , Nanofibers , Oryza , Trace Elements , Water/chemistry , Silver , Nanofibers/chemistry , Agar , Solid Phase Extraction , Limit of Detection
2.
J Chromatogr A ; 1687: 463699, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36508768

ABSTRACT

Herein, the composite of polylactic acid (PLA)/ Iron-based metal-organic framework (r-MIL-88A)/ Cellulose electrospun nanofibers was fabricated; and then, applied as a novel sorbent for thin-film micro-extraction (TFME) of four selected pesticides followed by GC-FID analysis. From the evaluation of scanning electron microscopy, Fourier transform infrared spectroscopy energy dispersive X-ray spectroscopy and X-ray diffraction, the successful fabrication of composite nanaofibers was approved. The presence of r-MIL-88A/Cellulose with large surface area and plenty of OH-functional groups results in improving PLA extraction efficiency. The effect of various main parameters on extraction efficiency was evaluated. The LODs (based on S/N = 3) were in the range of 1.0 to 1.5 ng mL-1. Intra-day and inter-day relative standard deviations (RSDs) were in the range of 4.8% - 5.6% and 5.2%-6.4%, respectively. In addition, the fiber to fiber relative standard deviations were observed in the range of 5.2%-12.3%. By using the optimized factors, acceptable linearity ranges were obtained in the range of 3.0-1900.0 ng mL-1 for metribuzin and ethofumasate, and 5.0-2000.0 for atrazine and ametryn (R2 = 0.9913-0.9967). The developed method was investigated in fruit juice, vegetables, milk and honey samples, and recoveries (79.3-95.6%) indicate that the PLA/r-MIL-88A/Cellulose can be a prominent composite film for the extraction of the target analytes in various samples.


Subject(s)
Metal-Organic Frameworks , Nanofibers , Pesticides , Nanofibers/chemistry , Pesticides/analysis , Polyesters/analysis , Cellulose , Limit of Detection , Solid Phase Extraction/methods
3.
Food Chem ; 386: 132734, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35334325

ABSTRACT

Herein, an electrospun composite from poly(vinyl alcohol) (PVA) and Stevia extract as a cross-linked nanofibrous was prepared with incorporating Fe-metal organic framework@Au nanoparticles (MIL-88A@AuNPs). The final composite was characterized, and then used as an efficient sorbent in pipette-tip micro solid-phase extraction (PT-µSPE) of eight selected pesticides in food samples followed by HPLC-UV analysis. Under the opted conditions, the linearity was in the range of 1.0-1000.0 ng mL-1 for atrazine and ametryn, 3.0-1500.0 ng mL-1 for tribenuron-methyl, metribuzin, profenofos and chlorpyrifos, 5.0 to 1500.0 ng mL-1 for phosalone, and 5.0-2000.0 ng mL-1 for malation with coefficient of determination (r2) ≥ 0.9943. The LODs (based on S/N = 3) ranged from 0.3 to 1.5 ng m L-1. The relative standard deviations (RSDs) were between 5.2% and 6.6% (intra-day, n = 5) and 5.9%-7.4% (inter-day, n = 3) for three consecutive days. Ultimately, the capability of the method in various food samples was appraised with good recoveries (79.3 to 97.6%).


Subject(s)
Metal Nanoparticles , Nanofibers , Pesticides , Stevia , Chromatography, High Pressure Liquid , Gold , Limit of Detection , Solid Phase Extraction , Vegetables
4.
J Chromatogr A ; 1655: 462484, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34487879

ABSTRACT

Sample preparation methods with high accuracy and matrix resistance will benefit the quick analysis of desired analytes in an intricate matrix, such as the monitoring of drug samples in biofluids. Herein, an electrospun composite, consisting of polyfam and a Co-metal organic framework- 74, was developed as a novel sorbent for the high-throughput solid-phase micro-extraction of certain anti-cancer drugs (sorafenib, dasatinib, and erlotinib hydrochloride) from wastewater and biological samples before high-performance liquid chromatography- ultraviolet analysis (HPLC-UV). The synthesis of the resulting composite nanofibers was confirmed using the techniques of Fourier transform-infrared spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and powder X-ray diffraction (XRD). FESEM images illustrated irregular and bead-free nanofibers with a diameter range of 126.9-269.6 nm. Thanks to the incorporation of Co-MOF-74 into the polyfam network, the electrospun nanofibers displayed a large surface area, high porosity, and significant extraction efficiency toward target analytes. Under optimal experimental conditions, the linearity was achieved in the range of 0.1-1500.0 µg L-1 for sorafenib and 0.5-1500.0 µg L-1 for dasatinib and erlotinib hydrochloride, with a coefficient of determination of ≥0.9996. The detection limits (LODs) were calculated within the range of 0.03-0.20 µg L-1. The relative standard deviation values (RSDs %) were in the range of 3.1%-8.6% (intra-day, n = 6) and 7.0%-10.3% (inter-day, n=3) in the span of three days. Ultimately, the application of the developed method was appraised for the quantification of trace amounts of the intended analytes in various spiked samples.


Subject(s)
Antineoplastic Agents , Nanofibers , Chromatography, High Pressure Liquid , Limit of Detection , Solid Phase Extraction , Solid Phase Microextraction , Wastewater
5.
Mikrochim Acta ; 188(8): 275, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34318377

ABSTRACT

Electrospun poly(vinyl alcohol)-(PVA)-poly(acrylic acid) (PAA)/carbon nanotubes(CNTs)-cellulose nanocrystal (CNC) (PVA-PAA/CNT-CNC) composite nanofibers were prepared and characterized using Fourier transform-infrared spectroscopy and field emission scanning electron microscopy. The resultant composite was used as an effective and novel sorbent for pipette-tip micro-solid phase extraction (PT-µSPE) of seven opioid analgesics (OAs) in biological samples followed by HPLC-UV analysis. Addition of CNT-CNC with the high specific surface area and plenty of OH-functional groups endows the nanofibers with considerable extraction efficiency. Under the optimum conditions, the linearity was obtained in the range 1.5 to 700.0 ng mL-1 for morphine, codeine, oxycodone, and tramadol, and 0.5 to 1000.0 ng mL-1 for nalbuphine, thebaine, and noscapine with coefficient of determination (r2) ≥ 0.9990. Detection limits (LODs) based on S/N = 3 were in the range of 0.15-0.50 ng mL-1. The relative standard deviations (RSDs) of 4.1-5.4% (intra-day, n = 5) and 5.2-6.4% (inter-day, n = 3) for three consecutive days were achieved. Finally, the efficiency of the PT-µSPE-HPLC-UV method was evaluated for the determination of OAs in human plasma and urine samples with good recoveries (87.3 to 97.8%). A: Schematic illustration for the preparation of PVA-PAA/CNT-CNC composite nanofibers. B: Schematic presentation of applying PVA-PAA/CNT-CNC composite nanofibers as the sorbent in pipette-tip micro solid-phase extraction (PT-µSPE) for the preconcentration of seven opioid analgesic drugs in biological samples before HPLC-UV analysis.


Subject(s)
Analgesics, Opioid/isolation & purification , Nanocomposites/chemistry , Nanofibers/chemistry , Solid Phase Microextraction/methods , Acrylic Resins/chemistry , Adsorption , Analgesics, Opioid/blood , Analgesics, Opioid/chemistry , Analgesics, Opioid/urine , Cellulose/chemistry , Chromatography, High Pressure Liquid , Humans , Limit of Detection , Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Polyvinyl Alcohol/chemistry , Solid Phase Microextraction/instrumentation , Spectrophotometry, Ultraviolet
6.
Food Chem ; 363: 130330, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34157556

ABSTRACT

An online micro solid-phase extraction (online-µSPE) using electrospun nanofibers, as an efficient sorbent, was developed to extract chlorobenzenes (CBs) from paddy soil, agricultural wastewater, and food samples (fruit juices, vegetables, rice samples) followed by high performance liquid chromatography analysis. Electrospun nanofibers were fabricated using a nanocomposite containing polyacrylonitrile and Zn-metal organic framework 74 @graphene oxide (PAN/Zn-MOF-74@GO), and subsequently characterized. Under the optimal conditions, acceptable linearity was obtained in the range of 0.25-700.00 ng mL-1 for 1,2-dichlorobenzene (1,2-DCB) and 2.50-700.00 ng mL-1 for both 1,2,3-trichlorobenzene (1,2,3-TCB) and 1,2,4-trichlorobenzene (1,2,4-TCB) with determination coefficients ≥ 0.9991. The limits of detection ranged from 0.08 to 1.10 ng mL-1. The intra-day and inter-day single fiber and fiber to fiber relative standard deviations were observed in the range of 4.1%-9.5% and 5.8%-12.1%, respectively. The performance of this method was examined by determining the target analytes in the different spiked samples.


Subject(s)
Nanocomposites , Water , Acrylic Resins , Chlorobenzenes , Chromatography, High Pressure Liquid , Limit of Detection , Soil , Solid Phase Extraction , Zinc
7.
Food Chem ; 350: 129242, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33626398

ABSTRACT

Herein, an electrospun polyacrylonitrile/nickel-based metal-organic framework nanocomposite (PAN/Ni-MOF) coating on a stainless steel wire was synthesized and employed as a novel nanosorbent for headspace solid-phase microextraction (HS-SPME) of organophosphorus pesticides (OPPs), diazinon (DIZ), and chlorpyrifos (CPS) from the diverse aqueous media followed by corona discharge ion mobility spectrometry (CD-IMS). Under the optimum experimental conditions, the calibration plots were linear in the range of 1.0-250.0 ng mL-1 for DIZ and 0.5-300.0 ng mL-1 for CPS with r2 > 0.999. The detection limits (S/N = 3) were 0.3 and 0.2 ng mL-1 for DIZ and CPS, respectively. The intra-day relative standard deviations (RSDs%) (n = 5) at the concentration levels of 20.0, 40.0, and 100.0 ng mL-1 were ≤ 5.2%. To investigate the extraction efficiency, PAN/Ni-MOF was employed to analyze various juice samples, including orange, apple, and grape juices, and in three water samples where it led to good recoveries ranged between 87% and 98%.


Subject(s)
Chlorpyrifos/isolation & purification , Diazinon/isolation & purification , Ion Mobility Spectrometry/methods , Metal-Organic Frameworks/chemistry , Nanofibers/chemistry , Nickel/chemistry , Pesticides/isolation & purification , Solid Phase Microextraction/methods , Fruit and Vegetable Juices/analysis , Limit of Detection , Stainless Steel/analysis , Stainless Steel/chemistry
8.
Mikrochim Acta ; 187(9): 508, 2020 08 22.
Article in English | MEDLINE | ID: mdl-32827280

ABSTRACT

Electrospun nanofibers of polyacrylonitrile/Ni-metal-organic framework 74 (PAN/Ni-MOF-74) were prepared and utilized as a novel sorbent for spin-column micro-solid-phase extraction (SC-µSPE) of atenolol (ATN) and captopril (CAP). The electrospun nanofibers were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. Ni-MOF-74 nanoparticles in the polymeric network of polyacrylonitrile considerably enhance the extraction efficiency of the electrospun sorbent due to providing hydrophobic, hydrogen bonding, and π-π interactions with the target analytes. The entire procedure, including sample loading, washing, and eluting of the target analytes was performed by centrifugation of the spin column. The extracted analytes were then quantified by high-performance liquid chromatography with a diode array detector. Various parameters affecting extraction efficiency were optimized using the one-variable-at-a-time method. Under optimum conditions, the calibration plots were linear in the range 0.5-500 ng mL-1 for ATN and 0.3-500 ng mL-1 for CAP with r2 > 0.999. Limits of detection of 0.15 and 0.13 ng mL-1 were obtained for ATN and CAP, respectively. The intra-assay relative standard deviation for five replicate measurements was ≤ 7.8. The relative recoveries for both drugs were within the range 82.6-98.9%. The applicability of the method was successfully investigated for measuring the target drugs in biological fluids and wastewater. The results indicate proper accuracy and analytical performance of the proposed method. Graphical abstract Schematic presentation of electrospun nanofibers of polyacrylonitrile/Ni-metal-organic framework 74 (PAN/Ni-MOF-74) which are used as the sorbent for spin-column microextraction (SC-µSPE) of atenolol (ATN) and captopril (CAP) prior to HPLC-DAD analysis.

9.
Mikrochim Acta ; 187(2): 152, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32006112

ABSTRACT

Nanofibers were prepared from a nanocomposite consisting of polyacrylonitrile and a metal-organic framework of type MIL-53(Fe) by electrospinning. They are shown to be a viable sorbent for pipette-tip solid-phase extraction for the extraction of the benzodiazepine drugs nitrazepam and oxazepam. The nanofibers were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The effects of sample pH value and volume, composition, and amount of electrospun nanofibers, the number of adsorption cycles and the type and volume of the eluent were optimized. Following extraction the drugs were quantified by HPLC. Under the optimized conditions, response is linear for both drugs in the 5.0-1000 ng mL-1 concentration range. The limits of detection for oxazepam and nitrazepam are 1.5 and 2.5 ng mL-1, respectively, and the relative standard deviations at the levels of 50, 100 and 250 ng mL-1 (for n = 3) are ≤7.6%. The method was successfully applied for determination of drugs in spiked wastewater and biological fluids. Graphical abstractSchematic representation of polyacrylonitrile/MIL-53(Fe) composite nanofiber synthesis by electrospinning, and the use of them as the sorbent in pipette-tip microsolid-phase extraction (PT-µSPE) for the preconcentration of Nitrazepam and Oxazepam before HPLC-DAD analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...