Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
2.
Prog Mol Biol Transl Sci ; 200: 171-206, 2023.
Article in English | MEDLINE | ID: mdl-37739555

ABSTRACT

Diseases due to infections by pathogenic Escherichia coli strains are on the rise and with the growing antimicrobial resistance among bacterial pathogens, including this group. Thus, alternative therapeutic options are actively investigated. Among these alternatives is phage therapy. In the case of E. coli, the combination of the well understood biology of this species and its bacteriophages represents a good guiding example for the establishment of phage therapy principles against this and other pathogenic bacteria. In this chapter, the procedures toward the development of phage therapy against pathogenic E. coli with the use of T-even group of phages are discussed. These steps involve the isolation, purification, characterisation and large-scale production of these phages, with formulation of phage cocktails for in vitro and in vivo studies. The main emphasis is made on phage therapy of enteropathogenic E. coli O157:H, which is one of the prominent human pathogens but persists as a commensal bacterium in many food animals. The implementation of phage therapy against E. coli O157:H within the One Health framework in carrier animals and for treatment of meat, vegetables, fruits and other agricultural produce thus would allow controlling and interrupting the transmission routes of this pathogen to the human food chain and preventing human disease. Examples of successful control and elimination of E. coli O157:H are given, while the problems encountered in phage treatment of this pathogen are also discussed.


Subject(s)
Bacteriophages , Escherichia coli Infections , Humans , Animals , Escherichia coli , Escherichia coli Infections/therapy , Agriculture , Research Design
3.
Glycobiology ; 33(12): 1106-1116, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37741057

ABSTRACT

Glycosylation plays a crucial role in many aspects of cell biology, including cellular and organismal integrity, structure-and-function of many glycosylated molecules in the cell, signal transduction, development, cancer, and in a number of diseases. Besides, at the inter-organismal level of interaction, a variety of glycosylated molecules are involved in the host-microbiota recognition and initiation of downstream signalling cascades depending on the outcomes of the glycome-mediated ascertainment. The role of glycosylation in host-microbe interactions is better elaborated within the context of virulence and pathogenicity in bacterial infection processes but the symbiotic host-microbe relationships also involve substantive glycome-mediated interactions. The works in the latter field have been reviewed to a much lesser extent, and the main aim of this mini-review is to compensate for this deficiency and summarise the role of glycomics in host-microbe symbiotic interactions.


Subject(s)
Host Microbial Interactions , Microbiota , Symbiosis , Glycosylation , Glycomics
5.
6.
Expert Opin Drug Discov ; 17(9): 1047-1059, 2022 09.
Article in English | MEDLINE | ID: mdl-35968739

ABSTRACT

INTRODUCTION: In light of the ever-escalating problem of antimicrobial resistance, there is an urgent need for the development of new antimicrobials. In this review, the role of metabolomics in antimicrobial drug discovery and development is summarized and discussed. For this, ScienceDirect, PubMed, Web of Science and Google Scholar databases were searched with the article's keywords and their combinations to retrieve the most relevant and up-to-date information. AREAS COVERED: The areas covered include the metabolomic concepts and techniques and bioinformatic tools used in metabolomics as well as recent developments in these areas. Also, examples of the use of metabolomics tools in several areas of antimicrobial drug discovery are given. EXPERT OPINION: Metabolomics, with the corresponding bioinformatic support and combination with other omics technologies, represents an integral and essential part of antimicrobial drug discovery and development. Metabolomics contributes to the mechanism-based approach in antimicrobial drug discovery, reveals the mechanisms of action of antimicrobials and non-antimicrobial compounds, identifies new targets, and opens new ways to manage and control bacterial infections.


Subject(s)
Anti-Infective Agents , Metabolomics , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Computational Biology , Drug Discovery/methods , Humans , Metabolomics/methods
7.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36012591

ABSTRACT

In this work, we analysed human isolates of nontyphoidal Salmonella enterica subsp. enterica (NTS), which were collected from salmonellosis cases in Armenia from 1996 to 2019. This disease became a leading food-borne bacterial infection in the region, with the younger age groups especially affected. The isolates were characterised by serotyping, Enterobacterial Repetitive Intergenic Consensus (ERIC-PCR) typing, and whole genome sequencing (WGS). The main serotypes were S. Typhimurium, S. Enteritidis, and S. Arizonae. ERIC-PCR indicated a high degree of clonality among S. Typhimurium strains, which were also multidrug-resistant and produced extended spectrum beta-lactamases. During the study period, the frequency of S. Typhimurium and S. Arizonae isolations decreased, but with the increase in S. Enteritidis and other NTS. A total of 42 NTS isolates were subjected to WGS and explored for virulence-related traits and the corresponding genetic elements. Some virulence and genetic factors were shared by all NTS serotypes, while the main differences were attributed to the serotype-specific diversity of virulence genes, SPIs, virulence plasmids, and phages. The results indicated the variability and dynamics in the epidemiology of salmonellosis and a high virulence potential of human NTS isolates circulating in the region.


Subject(s)
Salmonella Infections , Salmonella enterica , Anti-Bacterial Agents , Armenia/epidemiology , Humans , Molecular Epidemiology , Salmonella/genetics , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella enterica/genetics , Virulence/genetics
10.
Int J Mol Sci ; 22(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918911

ABSTRACT

Understanding the mechanisms leading to the rise and dissemination of antimicrobial resistance (AMR) is crucially important for the preservation of power of antimicrobials and controlling infectious diseases. Measures to monitor and detect AMR, however, have been significantly delayed and introduced much later after the beginning of industrial production and consumption of antimicrobials. However, monitoring and detection of AMR is largely focused on bacterial pathogens, thus missing multiple key events which take place before the emergence and spread of AMR among the pathogens. In this regard, careful analysis of AMR development towards recently introduced antimicrobials may serve as a valuable example for the better understanding of mechanisms driving AMR evolution. Here, the example of evolution of tet(X), which confers resistance to the next-generation tetracyclines, is summarised and discussed. Initial mechanisms of resistance to these antimicrobials among pathogens were mostly via chromosomal mutations leading to the overexpression of efflux pumps. High-level resistance was achieved only after the acquisition of flavin-dependent monooxygenase-encoding genes from the environmental microbiota. These genes confer resistance to all tetracyclines, including the next-generation tetracyclines, and thus were termed tet(X). ISCR2 and IS26, as well as a variety of conjugative and mobilizable plasmids of different incompatibility groups, played an essential role in the acquisition of tet(X) genes from natural reservoirs and in further dissemination among bacterial commensals and pathogens. This process, which took place within the last decade, demonstrates how rapidly AMR evolution may progress, taking away some drugs of last resort from our arsenal.


Subject(s)
Bacteria/drug effects , Bacteria/genetics , Drug Resistance, Bacterial/drug effects , Mixed Function Oxygenases/genetics , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/classification , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/drug effects , Gene Transfer, Horizontal , Humans , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism , Mixed Function Oxygenases/metabolism , Mutation , Plasmids/genetics
11.
Int J Antimicrob Agents ; 57(2): 106253, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33264670

ABSTRACT

Representatives of the Mollicutes class are the smallest, wall-less bacteria capable of independent reproduction. They are widespread in nature, most are commensals, and some are pathogens of humans, animals and plants. They are also the main contaminants of cell cultures and vaccine preparations. Despite limited biosynthetic capabilities, they are highly adaptable and capable of surviving under various stress and extreme conditions, including antimicrobial selective pressure. This review describes current understanding of antibiotic resistance (ABR) mechanisms in Mollicutes. Protective mechanisms in these bacteria include point mutations, which may include non-target genes, and unique gene exchange mechanisms, contributing to transfer of ABR genes. Better understanding of the mechanisms of emergence and dissemination of ABR in Mollicutes is crucial to control these hypermutable bacteria and prevent the occurrence of highly ABR strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Gene Transfer, Horizontal , Tenericutes/drug effects , Animals , Genes, Bacterial , Humans , Mutation , Tenericutes/genetics
12.
Front Microbiol ; 11: 592223, 2020.
Article in English | MEDLINE | ID: mdl-33414769

ABSTRACT

A total of 291 non-duplicate isolates of non-typhoidal Salmonella (NTS) were collected from the fecal samples of patients with salmonellosis in Armenia and Georgia during 1996-2016. The isolates were tested for resistance to antimicrobials, including extended-spectrum ß-lactamases (ESBL). The high prevalence of multidrug-resistance (MDR) and ESBL-producer phenotypes was detected among Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) isolates collected from patients in Armenia between 1996 and 2016. A total of 36 MDR NTS isolates were subjected to whole genome sequencing (WGS) to determine the genetic background of antimicrobial resistance (AMR) and mobile genetic elements. All ESBL-producing S. Typhimurium isolates belonged to the same sequence type (ST328). The ESBL-producer phenotype was associated with plasmid-encoded CTX-M-5 production. A range of other plasmids was associated with resistance to other antimicrobials, including the MDR phenotype.

13.
Pathogens ; 8(3)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31277323

ABSTRACT

In this work, we investigated the potential effects of nontyphoidal Salmonella infection on autoantibody (AA) formation. The titer and profiles of autoantibodies in the sera of patients with acute salmonellosis due to Salmonella enterica serovar Typhimurium (S. Typhimurium) or Salmonella enterica serovar Enteritidis (S. Enteritidis) infection, as well as in convalescent patients, were determined with indirect immunofluorescence. A significant increase of autoantibodies in acute diseases caused by both serotypes of Salmonella and during post infection by S. Enteritidis was detected. Antibody profile analysis by multivariate statistics revealed that this increase was non-specific and was not dependent on the infectious agent or disease stage. The results obtained suggest that nontyphoidal Salmonella infection contributes to the generation of autoantibodies and may play a role in autoimmune disease.

14.
Front Immunol ; 10: 1609, 2019.
Article in English | MEDLINE | ID: mdl-31354742

ABSTRACT

Antiphospholipid antibodies (aPLs) comprise a diverse family of autoantibodies targeted against proteins with the affinity toward negatively charged phospholipids or protein-phospholipid complexes. Their clinical significance, including prothrombotic potential of anti-cardiolipin antibodies (aCLs), anti-ß2-glycoprotein I antibodies (aß2-GPIs), and lupus anti-coagulant (LA), is well-established. However, the ontogeny of these pathogenic aPLs remains less clear. While transient appearance of aPLs could be induced by various environmental factors, in genetically predisposed individuals these factors may eventually lead to the development of the antiphospholipid syndrome (APS). Since the first description of APS, it has been found that a wide variety of microbial and viral agents influence aPLs production and contribute to clinical manifestations of APS. Many theories attempted to explain the pathogenic potential of different environmental factors as well as a phenomenon termed molecular mimicry between ß2-GPI molecule and infection-relevant structures. In this review, we summarize and critically assess the pathogenic and non-pathogenic formation of aPLs and its contribution to the development of APS.


Subject(s)
Autoimmunity , Environment , Environmental Exposure , Animals , Antibodies, Antiphospholipid/immunology , Antiphospholipid Syndrome/epidemiology , Antiphospholipid Syndrome/etiology , Antiphospholipid Syndrome/prevention & control , Autoantibodies/immunology , Bacterial Infections/complications , Bacterial Infections/microbiology , Drug-Related Side Effects and Adverse Reactions/complications , Environmental Exposure/adverse effects , Humans , Microbiota , Mycoses/complications , Mycoses/microbiology , Vaccines/adverse effects , Virus Diseases/complications , Virus Diseases/virology
16.
Expert Opin Drug Discov ; 14(5): 455-468, 2019 05.
Article in English | MEDLINE | ID: mdl-30884978

ABSTRACT

INTRODUCTION: The development of new antimicrobials has become an urgent priority because of a global challenge emerging from the rise of antimicrobial resistant pathogens. Areas covered: In this review, the authors discuss the opportunities offered by modern omics approaches to address the challenge and the use of this approach in antimicrobial development. Specifically, the authors focus on the role of omics technologies and bioinformatics for the revelation of the effects of antimicrobials in a variety of microbial cellular processes, as well as the identification of potential cellular targets, the mechanisms of antimicrobial resistance, and the development of new antimicrobials. Expert opinion: Prevention of antimicrobial resistance does not only depend on rational drug design such as narrow-spectrum antimicrobials but on several factors. It is the opinion of the authors that the use of a multi-omics bioinformatics approach should become an integral part of antimicrobial drug discovery as well as in the prevention of antimicrobial resistance.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Design , Drug Development/methods , Computational Biology , Drug Discovery/methods , Drug Resistance, Microbial , Humans
18.
FEMS Microbiol Lett ; 365(18)2018 09 01.
Article in English | MEDLINE | ID: mdl-30052940

ABSTRACT

This review is devoted to the mechanisms of antibiotic resistance in mollicutes (class Bacilli, subclass Mollicutes), the smallest self-replicating bacteria, that can cause diseases in plants, animals and humans, and also contaminate cell cultures and vaccine preparations. Research in this area has been mainly based on the ubiquitous mollicute and the main contaminant of cell cultures, Acholeplasma laidlawii. The omics technologies applied to this and other bacteria have yielded a complex picture of responses to antimicrobials, including their removal from the cell, the acquisition of antibiotic resistance genes and mutations that potentially allow global reprogramming of many cellular processes. This review provides a brief summary of well-known resistance mechanisms that have been demonstrated in several mollicutes species and, in more detail, novel mechanisms revealed in A. laidlawii, including the least explored vesicle-mediated transfer of short RNAs with a regulatory potency. We hope that this review highlights new avenues for further studies on antimicrobial resistance in these bacteria for both a basic science and an application perspective of infection control and management in clinical and research/production settings.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Tenericutes/drug effects , Biomedical Research/trends
19.
Antibiotics (Basel) ; 7(2)2018 Apr 23.
Article in English | MEDLINE | ID: mdl-29690620

ABSTRACT

This perspective paper follows up on earlier communications on bacteriophage therapy that we wrote as a multidisciplinary and intercontinental expert-panel when we first met at a bacteriophage conference hosted by the Eliava Institute in Tbilisi, Georgia in 2015. In the context of a society that is confronted with an ever-increasing number of antibiotic-resistant bacteria, we build on the previously made recommendations and specifically address how the Nagoya Protocol might impact the further development of bacteriophage therapy. By reviewing a number of recently conducted case studies with bacteriophages involving patients with bacterial infections that could no longer be successfully treated by regular antibiotic therapy, we again stress the urgency and significance of the development of international guidelines and frameworks that might facilitate the legal and effective application of bacteriophage therapy by physicians and the receiving patients. Additionally, we list and comment on several recently started and ongoing clinical studies, including highly desired double-blind placebo-controlled randomized clinical trials. We conclude with an outlook on how recently developed DNA editing technologies are expected to further control and enhance the efficient application of bacteriophages.

20.
Front Immunol ; 8: 1630, 2017.
Article in English | MEDLINE | ID: mdl-29230215

ABSTRACT

Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host-microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.

SELECTION OF CITATIONS
SEARCH DETAIL
...