Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319027

ABSTRACT

Microbial resistance against common antibiotics has become one of the most serious threats to human health. The increasing statistics on this problem show the necessity of finding a way to deal with it. In recent years, antimicrobial peptides with unique properties and the capability of targeting a wide range of pathogens, have been considered as a potential for replacing common antibiotics. A small chitin-binding protein with anticandidal activity was isolated from Moringa oleifera seeds by Neto and colleagues in 2017, which very much resembled antimicrobial peptides. In this study, the antimicrobial protein 'AF-DP' was identified and characterized. AF-DP was heterologously expressed, purified, and characterized, and its 3D structure was predicted. Six molecular dynamic simulations were performed to investigate how the protein interacts with Gram-negative inner and outer, Gram-positive, fungal, cancerous, and normal mammalian membranes. Also, its antimicrobial and anticancer activity was assessed in vitro via minimum inhibition concentration (MIC) and MTT assays, respectively. This protein with 111 amino acids and a total net charge (of 10.5) has been predicted to be mainly composed of alpha helix and random coils. Its MIC affecting the growth of Escherichia coli, Staphylococcus aureus, and Candida albicans was 30 µg/ml, 100 µg/ml, and 100 µg/ml, respectively; AF-DP showed anticancer activity against MCF-7 breast cancer cell line. Scanning electron microscopic analysis confirmed the creation of pores and scratches on the surface of the bacterial membrane. The results of this research show that AF-DP can be a candidate for the production of new drugs as an AMP with antimicrobial activity.Communicated by Ramaswamy H. Sarma.

2.
Mol Biotechnol ; 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37479905

ABSTRACT

To investigate the effect of α3 and α5 helices on the biochemical characterization of Bacillus thermocatenulatus lipase (BTL2), both helices were deleted from native BTL2 lipase. After structural modeling and characterization, the truncated btl2 gene (Δbtl2) was cloned into E. coli BL21 under the control of the T7 promoter. After cultivation and induction of the recombinant bacteria, the Δα3α5 lipase was purified by Ni-NTA column chromatography. Next, the biochemical properties of the Δα3α5 lipase were compared with the previously expressed and purified native lipase. In the presence of the substrate tributyrin (C4), the maximum activity of native and Δα3α5 lipase was 9360 and 5000 U/mg, respectively. The deletion changed the substrate specificity from tributyrin (C4) to tricaprylin (C8) substrate. Native and Δα3α5 lipase showed similar activity patterns at all temperatures and pH values, with the activity of Δα3α5 lipase being approximately 20% lower than native lipase. Triton X100 increased the activity of native and Δα3α5 lipases by 2.1- and 2.5-fold, respectively.

3.
Biochimie ; 207: 83-95, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36493965

ABSTRACT

Glutamate carboxypeptidase is a bacterial enzyme of metallopeptidase superfamily. This enzyme is an exo-peptidase that catalyzes the hydrolysis of glutamate residues at the C-terminus of folic acid. The rCP302 is a novel zinc ion-dependent recombinant glutamate carboxypeptidase derived from a thermophilic bacterium, Cohnella sp. A01 (PTCC No: 1921). By simulating the structure of rCP302, analyzing its activity in various environmental settings, and contrasting it with that of related enzymes, we wanted to evaluate the heterologous production, purification, and characterization of this enzyme. The bioinformatics study showed that rCP302 had maximum similarity to M20 family of metallopeptidases. The purified rCP302 molecular weight was about 41.6 kDa. The optimum temperature and pH for the catalytic activity of rCP302 were 50 °C and 7.2, respectively. Fluorescence spectroscopy data elucidated the secondary structure of rCP302 and determined conformational changes caused by alterations in ambient conditions. Using folate as a substrate, Km and specific activity values were calculated as 0.108 µM and 687 µmol/min/mg, respectively. The enzyme activity was strongly inhibited when EDTA sequestered zinc ions. The half-life of this enzyme at 30 °C was 2012 min. Regarding the ability of rCP302 to degrade folic acid, and its long half-life at 37 °C, the normal temperature of many mammals, this enzyme can be introduced for further study for use in the pharmaceutical industry.


Subject(s)
Carboxypeptidases , Peptide Hydrolases , Animals , Carboxypeptidases/metabolism , Temperature , Peptide Hydrolases/metabolism , Organic Chemicals , Zinc , Folic Acid , Hydrogen-Ion Concentration , Substrate Specificity , Mammals/metabolism
4.
Sci Rep ; 12(1): 10301, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35717508

ABSTRACT

Cellulases are hydrolytic enzymes with wide scientific and industrial applications. We described a novel cellulase, CelC307, from the thermophilic indigenous Cohnella sp. A01. The 3-D structure of the CelC307 was predicted by comparative modeling. Docking of CelC307 with specific inhibitors and molecular dynamic (MD) simulation revealed that these ligands bound in a non-competitive manner. The CelC307 protein was purified and characterized after recombinant expression in Escherichia coli (E. coli) BL21. Using CMC 1% as the substrate, the thermodynamic values were determined as Km 0.46 mM, kcat 104.30 × 10-3 (S-1), and kcat/Km 226.73 (M-1 S-1). The CelC307 was optimally active at 40 °C and pH 7.0. The culture condition was optimized for improved CelC307 expression using Plackett-Burman and Box-Behnken design as follows: temperature 20 °C, pH 7.5, and inoculation concentration with an OD600 = 1. The endoglucanase activity was positively modulated in the presence of Na+, Li+, Ca2+, 2-mercaptoethanol (2-ME), and glycerol. The thermodynamic parameters calculated for CelC307 confirmed its inherent thermostability. The characterized CelC307 may be a suitable candidate for various biotechnological applications.


Subject(s)
Bacillales , Cellulase , Cellulases , Bacillales/metabolism , Cellulase/metabolism , Cellulases/metabolism , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Ions , Temperature
5.
BMC Biotechnol ; 22(1): 1, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34980082

ABSTRACT

BACKGROUND: SHuffle is a suitable Escherichia coli (E. coli) strain for high yield cytoplasmic soluble expression of disulfide-bonded proteins such as Insulin due to its oxidative cytoplasmic condition and the ability to correct the arrangement of disulfide bonds. Lispro is an Insulin analog that is conventionally produced in E. coli as inclusion bodies (IBs) with prolonged production time and low recovery. Here in this study, we aimed to optimize cultivation media composition for high cell density fermentation of SHuffle T7 E. coli expressing soluble Lispro proinsulin fused to SUMO tag (SU-INS construct) to obtain high cell density fermentation. RESULTS: Factors including carbon and nitrogen sources, salts, metal ions, and pH were screened via Plackett-Burman design for their effectiveness on cell dry weight (CDW) as a measure of cell growth. The most significant variables of the screening experiment were Yeast extract and MgCl2 concentration, as well as pH. Succeedingly, The Central Composite Design was utilized to further evaluate and optimize the level of significant variables. The Optimized media (OM-I) enhanced biomass by 2.3 fold in the shake flask (2.5 g/L CDW) that reached 6.45 g/L (2.6 fold increase) when applied in batch culture fermentation. The efficacy of OM-I media for soluble expression was confirmed in both shake flask and fermentor. CONCLUSION: The proposed media was suitable for high cell density fermentation of E. coli SHuffle T7 and was applicable for high yield soluble expression of Lispro proinsulin.


Subject(s)
Escherichia coli , Proinsulin , Culture Media/chemistry , Disulfides , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Insulin Lispro/metabolism , Proinsulin/genetics
6.
Prep Biochem Biotechnol ; 52(4): 413-423, 2022.
Article in English | MEDLINE | ID: mdl-34612172

ABSTRACT

This study describes the hyaluronic acid (HA) production by S. zooepidemicus ATCC 43079, and the effect of the hyaluronidase enzyme on HA levels. The hyaluronidase production, glucose consumption, and lactate formation were recorded during fermentation. The HA production, and productivity at different amounts of glucose, yeast extract and pH were evaluated by response surface statistical approach in presence of 6-O-palmytoil-l-ascorbic acid as a chemical inhibitor for biocatalyst hyaluronidase. Under optimum conditions, HA production was increased two-fold from 190 ± 17 mg L-1 in basal medium to 384.6 ± 7.5 mg L-1 in the optimized medium containing enzyme inhibitor. Furthermore, the results indicated that the chemical inhibitor could suppress the biocatalyst activity and prevent the HA loss at the end of the exponential phase of S. zooepidemicus ATCC 43079.


Subject(s)
Streptococcus equi , Culture Media , Glucose , Hyaluronic Acid , Hyaluronoglucosaminidase
7.
Sci Rep ; 11(1): 24485, 2021 12 29.
Article in English | MEDLINE | ID: mdl-34966175

ABSTRACT

A new strain of Influenza A Virus (IAV), so-called "H7N9 Avian Influenza", is the first strain of this virus in which a human is infected by transmitting the N9 of influenza virus. Although continuous human-to-human transmission has not been reported, the occurrence of various H7N9-associated epidemics and the lack of production of strong antibodies against H7N9 in humans warn of the potential for H7N9 to become a new pandemic. Therefore, the need for effective vaccination against H7N9 as a life-threatening viral pathogen has become a major concern. The current study reports the design of a multi-epitope vaccine against Hemagglutinin (HA) and Neuraminidase (NA) proteins of H7N9 Influenza A virus by prediction of Cytotoxic T lymphocyte (CTL), Helper T lymphocyte (HTL), IFN-γ and B-cell epitopes. Human ß-defensin-3 (HßD-3) and pan HLA DR-binding epitope (PADRE) sequence were considered as adjuvant. EAAAK, AAY, GPGPG, HEYGAEALERAG, KK and RVRR linkers were used as a connector for epitopes. The final construct contained 777 amino acids that are expected to be a recombinant protein of about ~ 86.38 kDa with antigenic and non-allergenic properties after expression. Modeled protein analysis based on the tertiary structure validation, docking studies, and molecular dynamics simulations results like Root-mean-square deviation (RMSD), Gyration, Root-mean-square fluctuation (RMSF) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) showed that this protein has a stable construct and capable of being in interaction with Toll-like receptor 7 (TLR7), TLR8 and m826 antibody. Analysis of the obtained data the demonstrates that suggested vaccine has the potential to induce the immune response by stimulating T and Bcells, and may be utilizable for prevention purposes against Avian Influenza A (H7N9).


Subject(s)
Epitopes/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Animals , Birds , Computational Biology , Computer Simulation , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunity , Influenza in Birds/immunology , Models, Immunological , Models, Molecular , Neuraminidase/immunology , Viral Proteins/immunology
8.
Article in English | MEDLINE | ID: mdl-34521302

ABSTRACT

The biodetoxification of cyanide-rich wastewater has been suggested as an appropriate technique due to its environmental friendliness and cost effectiveness. In this research, Enterobacter zs that was newly isolated from cyanide-polluted wastewater was selected to catalyze cyanide via an enzymatic mechanism. Enzyme was purified and its activity was also determined by ammonia assay. Subsequently, the operational procedure was optimized to enhance cyanide biodegradation at variable pH values, temperatures and cyanide concentrations using response surface methodology (RSM). The results revealed that the interactions between pH and temperature, as well as those between pH and cyanide concentration, were significant, and the concentration of cyanide in a 650 mg.L-1 solution was decreased by 73%. According to this study, it can be proposed that due to its higher activity level compared with those of similar enzymes, this enzyme can prove useful in enzymatic biodegradation of cyanide which is a promising approach in the treatment of industrial effluent.


Subject(s)
Cyanides , Water Pollutants, Chemical , Ammonia , Biodegradation, Environmental , Carbon Dioxide , Enterobacter
9.
Int J Biol Macromol ; 187: 373-385, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34329665

ABSTRACT

Superoxide dismutases (SODs) (EC 1.15.1.1) are well known antioxidant enzymes that play critical roles in cellular defenses of living organisms against harmful superoxide radicals during oxidative stress. This study details on cloning, biochemical and functional characterization of an iron containing type superoxide dismutase (SOD) from a novel thermophilic bacteria Cohnella sp. A01 (CaSOD). The secondary and three dimensional structure of the protein were predicted. CaSOD gene was subsequently cloned into pET-26b(+) expression vector and expression of the recombinant protein (rCaSOD) was optimized in E. coli BL21 (DE3) and the purified recombinant SOD showed a single band with an apparent molecular weight of 26 kDa by SDS-PAGE. The half-life and thermodynamic parameters including ΔH⁎, ΔS⁎, and ΔG⁎ were 187 min at 60 °C, 7.3 kJ.mol-1, -76.8 kJ.mol-1.°K-1, and 84.1 kJ.mol-1, respectively. The rCaSOD exhibited catalytic activity in a very broad range of pH (6.0-10.0) and temperatures (35-75 °C), as well as stability in a broad pH range, from 3.0 to 11.0, and wide range of temperature, different concentrations of detergent agents, metal ions, organic solvents and other chemicals. The results suggest that this novel enzyme could be used for various industrial applications in cosmetic, food, and pharmaceutical industries.


Subject(s)
Bacillales/enzymology , Bacterial Proteins/metabolism , Iron/metabolism , Superoxide Dismutase/metabolism , Superoxides/metabolism , Amino Acid Sequence , Bacillales/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Cloning, Molecular , Enzyme Stability , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Protein Conformation , Structure-Activity Relationship , Substrate Specificity , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Temperature
10.
Protein J ; 40(5): 689-698, 2021 10.
Article in English | MEDLINE | ID: mdl-34047882

ABSTRACT

As a safe substitute for hydroquinone, ß-arbutin, a natural plant substance, and its synthetic counterpart, α-arbutin, are used in depigmentation formulations. However, there are debatable points regarding the impact of arbutin on tyrosinase and the pigmentation process. To shed light on this issue, the effects of Pyrus biossieriana leaves extract (PbLE) and ß-arbutin, extracted from PbLE, on mushroom tyrosinase (MT) were comprehensively examined. The study was focused on cresolase activity as the characteristic reaction of a tyrosinase. Kinetics studies disclosed that ß-arbutin can modulate MT monophenolase activity from inhibition to activation or vice versa. ß-Arbutin inhibited L-tyrosine (LTy) oxidation at concentrations < 0.3 mM but it increased (more than 400%) the enzymatic oxidation of L-tyrosine at the concentrations > 0.3 mM. An opposite pattern (activation then inhibition) was observed when a synthetic substrate was used instead of LTy. Computational studies, focused on the heavy chain of MT, indicated that ß-arbutin effect could be overruled by the enzyme's ability to provide the ligand with a non-specific binding site (MTPc). A plausible mechanism was presented to show the influence of MTPc on the substrate pose in the active site. The possible determinant correlation between the findings of this research and the current studies on human tyrosinase role in the pigmentation process has been presented.


Subject(s)
Agaricales/enzymology , Arbutin/chemistry , Fungal Proteins/chemistry , Monophenol Monooxygenase/chemistry , Plant Leaves/chemistry , Pyrus/chemistry
11.
Sci Rep ; 11(1): 4573, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633359

ABSTRACT

Thermostability and substrate specificity of proteases are major factors in their industrial applications. rEla is a novel recombinant cysteine protease obtained from a thermophilic bacterium, Cohnella sp.A01 (PTCC No: 1921). Herein, we were interested in recombinant production and characterization of the enzyme and finding the novel features in comparison with other well-studied cysteine proteases. The bioinformatics analysis showed that rEla is allosteric cysteine protease from DJ-1/ThiJ/PfpI superfamily. The enzyme was heterologously expressed and characterized and the recombinant enzyme molecular mass was 19.38 kD which seems to be smaller than most of the cysteine proteases. rEla exhibited acceptable activity in broad pH and temperature ranges. The optimum activity was observed at 50℃ and pH 8 and the enzyme showed remarkable stability by keeping 50% of residual activity after 100 days storage at room temperature. The enzyme Km and Vmax values were 21.93 mM, 8 U/ml, respectively. To the best of our knowledge, in comparison with the other characterized cysteine proteases, rEla is the only reported cysteine protease with collagen specificity. The enzymes activity increases up to 1.4 times in the presence of calcium ion (2 mM) suggesting it as the enzyme's co-factor. When exposed to surfactants including Tween20, Tween80, Triton X-100 and SDS (1% and 4% v/v) the enzyme activity surprisingly increased up to 5 times.


Subject(s)
Bacillales/enzymology , Cysteine Proteases/metabolism , Amino Acid Sequence , Bacillales/drug effects , Bacillales/genetics , Binding Sites , Cysteine Proteases/chemistry , Cysteine Proteases/genetics , Enzyme Activation/drug effects , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Molecular Docking Simulation , Molecular Dynamics Simulation , Phylogeny , Protein Binding , Protein Conformation , Sequence Analysis, DNA , Structure-Activity Relationship , Temperature
12.
PLoS One ; 15(6): e0234958, 2020.
Article in English | MEDLINE | ID: mdl-32574185

ABSTRACT

Proteases play an essential role in living organisms and represent one of the largest groups of industrial enzymes. The aim of this work was recombinant production and characterization of a newly identified thermostable protease 1147 from thermophilum indigenous Cohnella sp. A01. Phylogenetic tree analysis showed that protease 1147 is closely related to the cysteine proteases from DJ-1/ThiJ/PfpI superfamily, with the conserved catalytic tetrad. Structural prediction using MODELLER 9v7 indicated that protease 1147 has an overall α/ß sandwich tertiary structure. The gene of protease 1147 was cloned and expressed in Escherichia coli (E. coli) BL21. The recombinant protease 1147 appeared as a homogenous band of 18 kDa in SDS-PAGE, which was verified by western blot and zymography. The recombinant protein was purified with a yield of approximately 88% in a single step using Ni-NTA affinity chromatography. Furthermore, a rapid one-step thermal shock procedure was successfully implemented to purify the protein with a yield of 73%. Using casein as the substrate, Km, and kcat, kcat/Km values of 13.72 mM, 3.143 × 10-3 (s-1), and 0.381 (M-1 S-1) were obtained, respectively. The maximum protease activity was detected at pH = 7 and 60°C with the inactivation rate constant (kin) of 2.10 × 10-3 (m-1), and half-life (t1/2) of 330.07 min. Protease 1147 exhibited excellent stability to organic solvent, metal ions, and 1% SDS. The protease activity was significantly enhanced by Tween 20 and Tween 80 and suppressed by cysteine protease specific inhibitors. Docking results and molecular dynamics (MD) simulation revealed that Tween 20 interacted with protease 1147 via hydrogen bonds and made the structure more stable. CD and fluorescence spectra indicated structural changes taking place at 100°C, very basic and acidic pH, and in the presence of Tween 20. These properties make this newly characterized protease a potential candidate for various biotechnological applications.


Subject(s)
Bacillales/enzymology , Bacterial Proteins/chemistry , Peptide Hydrolases/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/ultrastructure , Cloning, Molecular , Enzyme Assays , Enzyme Stability , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Molecular Weight , Peptide Hydrolases/isolation & purification , Peptide Hydrolases/ultrastructure , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/ultrastructure , Substrate Specificity
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117897, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31836401

ABSTRACT

There is an increasing need for accurate and inexpensive glucometers as the world moves toward personalized medicine. Among the existing technologies, photometric based devices are more desired due to the cost-effectiveness, ease-of-use and the potential to be adopted in the smart-phone technology for remote sensing and self-monitoring purposes. However, the accuracy, precision, and reproducibility of the results of these devices are heavily dependent on the details of the chosen glucose measuring method. Considering the delicate problems with the current spectrophotometric methods, a new method was developed for more precise, accurate, and fast measurement of blood glucose via the coupled reactions of glucose oxidase and peroxidase using 4-[(4-Hydroxy-3-methoxyphenyl) azo]-benzenesulfonic acid (GASA) as the substrate. Stability of GASA and its oxidized products along with its direct and fast consumption by peroxidase, made it possible to determine blood glucose concentration in <20 s with high reproducibility. The low detection limit of GASA method (0.36 mg dL-1) with a linear range from 0.36 to 399.6 mg.dL-1 also allowed determination of salivary glucose concentration (SGC). As compared with the blood samples, the SGC results were more dispersed, especially for the diabetic participants, assumingly due to the diverse nature of salivary samples. However, a good correlation coefficient of 0.81 for non-diabetic individuals showed that it is accurate enough to recognize non-diabetic from diabetic condition. Results of this study disclose the potential application of GASA method as a reliable alternative for the current spectrophotometric methods with the ability to be adopted in miniaturized glucometers.


Subject(s)
Blood Glucose/metabolism , Glucose Oxidase/chemistry , Peroxidases/chemistry , Saliva/metabolism , Sulfinic Acids/chemistry , Adult , Female , Humans , Male , Middle Aged , Reproducibility of Results , Spectrophotometry, Ultraviolet
14.
Sci Rep ; 9(1): 19062, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31836796

ABSTRACT

L-glutaminase importance to use in the food industry and medicine has attracted much attention. Enzymes stability has always been a challenge while working with them. We heterologously expressed and characterized a novel stable L-glutaminase from an extremophile bacterium (Cohnella sp. A01, PTCC No: 1921). Km, Vmax, catalytic efficiency and specific activity of rSAM were respectively 1.8 mM, 49 µmol/min, 1851 1/(S.mM) and 9.2 IU/mg. Activation energy for substrate to product conversion and irreversible thermo-inactivation were respectively 4 kJ/mol and 105 kJ/mol from the linear Arrhenius plot. rSAM had the highest activity at temperature 50 °C, pH 8 and was resistant to a wide range of temperature and pH. In compare to the other characterized glutaminases, rSAM was the most resistant to NaCl. Mg2+, glycerol, DTT, and BME enhanced the enzyme activity and iodoacetate and iodoacetamide inhibited it. rSAM had only been partially digested by some proteases. According to the Fluorimetry and Circular dichroism analysis, rSAM in pH range from 4 to 11 and temperatures up to 60 °C had structural stability. A cysteine residue in the enzyme active site and a thiol bond were predicted upon the modeled tertiary structure of rSAM. Present structural studies also confirmed the presence of a thiol bond in its structure.


Subject(s)
Bacillales/enzymology , Glutaminase/metabolism , Halogens/pharmacology , Thermotolerance , Circular Dichroism , Computer Simulation , Enzyme Stability/drug effects , Glutaminase/chemistry , Hydrogen-Ion Concentration , Kinetics , Metals/pharmacology , Peptide Hydrolases/metabolism , Recombinant Proteins/metabolism , Sodium Chloride/pharmacology , Spectrometry, Fluorescence , Substrate Specificity/drug effects , Temperature
15.
Heliyon ; 5(9): e02543, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31687608

ABSTRACT

Laccase (EC 1.10.3.2; benzenediol; oxygen oxidoreductases) is a multi-copper oxidase that catalyzes the oxidation of phenols, polyphenols, aromatic amines, and different non-phenolic substrates with concomitant reduction of O2 to H2O. Enzymatic oxidation techniques have the potential of implementation in different areas of industrial fields. In this study, the Cohnella sp. A01 laccase gene was cloned into pET-26 (b+) vector and was transformed to E. coli BL21. Then it was purified using His tag affinity (Ni sepharose resin) chromatography. The estimated molecular weight was approximately 60 kDa using SDS-PAGE. The highest enzyme activity and best pH for 2,6-dimethoxyphenol (DMP) oxidation were recorded as 8 at 90 °C respectively. The calculated half-life and kinetic values including Km, Vmax, turn over number (kcat), and catalytic efficiency (kcat/Km) of the enzyme were 106 min at 90 °C and 686 µM, 10.69 U/ml, 20.3 S-, and 0.029 s-1 µM-1, respectively. The DMP was available as the substrate in all the calculations. Enzyme activity enhanced in the presence of Cu2+, NaCl, SDS, n-hexane, Triton X-100, tween 20, and tween 80, significantly. The binding residues were predicted and mapped upon the modeled tertiary structure of identified laccase. The remaining activity and structural properties of Cohnella sp. A01 laccase in extreme conditions such as high temperatures and presence of metals, detergents, and organic solvents suggest the potential of this enzyme in biotechnological and industrial applications. This process has been patented in Iranian Intellectual Property Centre under License No: 91325.

16.
Food Sci Nutr ; 7(9): 2875-2887, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31572581

ABSTRACT

The use of herbal remedies is significantly considered in the atherosclerosis treatment, reduction of fatty elements, and prevention of activity of oxidative stress factors. The present study was conducted on 48 rats in 6 groups. The experimental and sham groups were fed with 2% cholesterol for 40 days; and experimental groups were separately treated by atorvastatin, quercetin, and hydroalcoholic extract for 4 weeks. After treatment procedure, some serum factors such as low-density lipoprotein (LDL), total cholesterol (TC), malondialdehyde (MDA), and reactive oxygen species (ROS) were evaluated. Serum levels of LDL, TC, MDA, and ROS were significantly lower in experimental groups than sham group (p < .01). There was a significant decrease in serum MDA levels of these two groups in comparison with the atorvastatin-treated group (p < .05). Blood pressure parameters were decreased in treated with quercetin and hydroalcoholic extract in comparison with the sham group (p < .05). Quercetin and hydroalcoholic extract similar to atorvastatin could decrease serum lipids [except high-density lipoprotein (HDL)], oxidative stress factors, aorta contraction, weight gain, and blood pressure. These reagents improved the vascular structure and prevented the plaque formation.

17.
Int J Biol Macromol ; 121: 870-881, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30342141

ABSTRACT

Hyaluronic acid (HA) is a natural polymer with various molecular weights that specify multiple biological roles. Traditionally, HA is obtained from animal waste and conventional pathogenic streptococci. However, there are challenges in these processes such as the presence of exotoxins, hyaluronidase, and viral contamination. In order to reduce these problems, this study was conducted to produce HA using recombinant bacterium that is generally recognized as safe (GRAS), and thereafter increase production through experimental design. At first, some lactic acid bacteria were screened and evaluated for HA production. Accordingly, among the selected bacteria, Lactobacillus acidophilus PTCC1643 produced about 0.25 g HA/L in the 48th hour of cultivation, and was thus selected as an alternative host for heterologous HA production. An expression vector containing HA synthase genes was transformed into L. acidophilus by electroporation. Consequently, HA production increased to 0.4 g/L. Eventually, response surface method (RSM) was used, which increased HA production to 1.7 g/L. This is approximately 7-fold higher than that produced at first. The resulting HA was characterized by FTIR spectroscopy and its molecular weight was estimated using agarose gel electrophoresis. In conclusion, L. acidophilus could be a safe, effective, and novel HA producer with industrial potential and commercial prospects.


Subject(s)
Culture Media/chemistry , Genetic Engineering , Hyaluronic Acid/biosynthesis , Lactobacillus acidophilus/genetics , Lactobacillus acidophilus/metabolism , Electroporation , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/metabolism , Lactobacillus acidophilus/growth & development , Molecular Weight
18.
Int J Biol Macromol ; 116: 64-70, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29733926

ABSTRACT

Chitinases with high thermostability are important for many industrial and biotechnological applications. This study was conducted to enhance the stability of Serratia marcescens B4A chitinase by site directed mutagenesis of G191 V. Further characterization showed that the thermal stability of the mutant showed marked increase of about 5 and 15 fold at 50 and 60 °C respectively, while the optimum temperature and pH was retained. Kinetic analysis showed decreased Km and Vmax of the mutant in comparison with the wild type chitinase of about 1.3 and 3 fold, respectively. Based on structural prediction, it was speculated that this replacement shortened an important loop concomitant with the extension of adjacent ß sheets. Accordingly, a higher thermostability of G191 V up to 90 °C supporting the decreased flexibility of unfolded state was also indicated. Finally, a practical proof of kinetic and thermal stabilization of chitinase was provided through decreased flexibility and entropic stabilization of its surface loops.


Subject(s)
Chitinases/genetics , Serratia marcescens/genetics , Hydrogen-Ion Concentration , Kinetics , Mutagenesis, Site-Directed/methods , Temperature
19.
Iran Biomed J ; 22(5): 345-54, 2018 09.
Article in English | MEDLINE | ID: mdl-29331014

ABSTRACT

Background: Typically, non-cellulytic glucanase, including fungi and yeast cell wall hydrolyzing enzymes, are released by some symbiotic fungi and plants during the mycoparasitic fungi attack on plants. These enzymes are known as the defense mechanisms of plants. This study intends to investigate the biochemical properties of ß-1,6-glucanase (bg16M) from native thermophilic bacteria, Cohnella A01. Methods: bg16M gene was cloned and expressed in E. coli BL21 (DE3). The enzyme was purified utilizing Ni-NTA nikcle sepharose column. Pustulan and laminarin were selected as substrates in enzyme assay. The purified bg16M enzyme was treated with different pH, temperature, metal ions, and detergents. Results: The expressed protein, including 639 amino acids, showed a high similarity with the hydrolytic glycosylated family 30. The molecular weight of enzyme was 64 kDa, and purification yield was 46%. The bg16M demonstrated activity as 4.83 U/ml on laminarin and 2.88 U/ml on pustulan. The optimum pH and temperature of the enzyme were 8 and 50 °C, respectively. The enzyme had an appropriate stability at high temperatures and in the pH range of 7 to 9, showing acceptable stability, while it did not lose enzymatic activity completely at acidic or basic pH. None of the studied metal ions and chemical compounds was the activator of bg16M, and urea, SDS, and copper acted as enzyme inhibitors. Conclusion: Biochemical characterization of this enzyme revealed that bg16M can be applied in beverage industries and medical sectors because of its high activity, as well as thermal and alkaline stability.


Subject(s)
Gram-Positive Bacteria/chemistry , Gram-Positive Bacteria/genetics , Hot Temperature , beta-Glucans/chemistry , Bacillus/chemistry , Bacillus/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Phylogeny , Protein Structure, Secondary
20.
AMB Express ; 7(1): 200, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29127658

ABSTRACT

Cyanide is used in many industries despite its toxicity. Cyanide biodegradation is affordable and eco-friendly. Sampling from cyanide-contaminated areas from the Muteh gold mine and isolation of 24 bacteria were performed successfully. The selected bacteria-'Bacillus sp. M01'-showed maximum tolerance (15 mM) to cyanide and deposited in Persian Type Culture Collection by PTCC No.: 1908. In the primary experiments, effective factors were identified through the Plackett-Burman design. In order to attain the maximum degradation by Bacillus sp. M01 PTCC 1908, culture conditions were optimized by using response surface methodology. By optimizing the effective factor values and considering the interaction between them, the culture conditions were optimized. The degradation percentage was calculated using one-way ANOVA vs t test, and was found to have increased 2.35 times compared to pre-optimization. In all of the experiments, R2 was as high as 91%. The results of this study are strongly significant for cyanide biodegradation. This method enables the bacteria to degrade 86% of 10 mM cyanide in 48 h. This process has been patented in Iranian Intellectual Property Centre under Licence No: 90533.

SELECTION OF CITATIONS
SEARCH DETAIL
...