Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15357, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965313

ABSTRACT

Halide perovskite (HPs) nanostructures have recently gained extensive worldwide attentions because of their remarkable optoelectronic properties and fast developments. However, intrinsic instability against environmental factors-i.e., temperature, humidity, illumination, and oxygen-restricted their real-life applications. HPs are typically synthesized as colloids by employing organic solvents and ligands. Consequently, the precise control and tuning of complex 3D perovskite morphologies are challenging and have hardly been achieved by conventional fabrication methods. Here, we combine the benefits of self-assembly of biomolecules and an ion exchange reaction (IER) approach to customize HPs spatial shapes and composition. Initially, we apply a biomineralization approach, using biological templates (such as biopolymers, proteins, or protein assemblies), modulating the morphology of MCO3 (M = Ca2+, Ba2+) nano/microstructures. We then show that the morphology of the materials can be maintained throughout an IER process to form surface HPs with a wide variety of morphologies. The fabricated core-shell structures of metal carbonates and HPs introduce nano/microcomposites that can be sculpted into a wide diversity of 3D architectures suitable for various potential applications such as sensors, detectors, catalysis, etc. As a prototype, we fabricate disposable humidity sensors with an 11-95% detection range by casting the formed bio-templated nano/micro-composites on paper substrate.

2.
Sci Rep ; 13(1): 11389, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452128

ABSTRACT

To address the increasing environmental footprint of the fast-growing textile industry, self-repairing textile composites have been developed to allow torn or damaged textiles to restore their morphological, mechanical, and functional features. A sustainable way to create these textile composites is to introduce a coating material that is biologically derived, biodegradable, and can be produced through scalable processes. Here, we fabricated self-repairing textile composites by integrating the biofilms of Escherichia coli (E. coli) bacteria into conventional knitted textiles. The major structural protein component in E. coli biofilm is a matrix of curli fibers, which has demonstrated extraordinary abilities to self-assemble into mechanically strong macroscopic structures and self-heal upon contact with water. We demonstrated the integration of biofilm through three simple, fast, and scalable methods: adsorption, doctor blading, and vacuum filtration. We confirmed that the composites were breathable and mechanically strong after the integration, with improved Young's moduli or elongation at break depending on the fabrication method used. Through patching and welding, we showed that after rehydration, the composites made with all three methods effectively healed centimeter-scale defects. Upon observing that the biofilm strongly attached to the textiles by covering the extruding textile fibers from the self-repair failures, we proposed that the strength of the self-repairs relied on both the biofilm's cohesion and the biofilm-textile adhesion. Considering that curli fibers are genetically-tunable, the fabrication of self-repairing curli-expressing biofilm-textile composites opens new venues for industrially manufacturing affordable, durable, and sustainable functional textiles.


Subject(s)
Escherichia coli , Textiles , Bacteria , Biofilms , Fimbriae, Bacterial
3.
Nanoscale ; 15(7): 2997-3031, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36722934

ABSTRACT

Halide perovskite nanocrystals (HPNCs) have emerged at the forefront of nanomaterials research over the past two decades. The physicochemical and optoelectronic properties of these inorganic semiconductor nanoparticles can be modulated through the introduction of various ligands. The use of biomolecules as ligands has been demonstrated to improve the stability, luminescence, conductivity and biocompatibility of HPNCs. The rapid advancement of this field relies on a strong understanding of how the structure and properties of biomolecules influences their interactions with HPNCs, as well as their potential to extend applications of HPNCs towards biological applications. This review addresses the role of several classes of biomolecules (amino acids, proteins, carbohydrates, nucleotides, etc.) that have shown promise for improving the performance of HPNCs and their potential applications. Specifically, we have reviewed the recent advances on incorporating biomolecules with HP nanomaterials on the formation, physicochemical properties, and stability of HP compounds. We have also shed light on the potential for using HPs in biological and environmental applications by compiling some recent of proof-of-concept demonstrations. Overall, this review aims to guide the field towards incorporating biomolecules into the next-generation of high-performance HPNCs for biological and environmental applications.


Subject(s)
Inorganic Chemicals , Nanoparticles , Calcium Compounds , Oxides
4.
ACS Biomater Sci Eng ; 9(5): 2156-2169, 2023 05 08.
Article in English | MEDLINE | ID: mdl-35687654

ABSTRACT

Poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) is a highly conductive, easily processable, self-healing polymer. It has been shown to be useful in bioelectronic applications, for instance, as a biointerfacing layer for studying brain activity, in biosensitive transistors, and in wearable biosensors. A green and biofriendly method for improving the mechanical properties, biocompatibility, and stability of PEDOT:PSS involves mixing the polymer with a biopolymer. Via structural changes and interactions with PEDOT:PSS, biopolymers have the potential to improve the self-healing ability, flexibility, and electrical conductivity of the composite. In this work, we fabricated novel protein-polymer multifunctional composites by mixing PEDOT:PSS with genetically programmable amyloid curli fibers produced byEscherichia coli bacteria. Curli fibers are among the stiffest protein polymers and, once isolated from bacterial biofilms, can form plastic-like thin films that heal with the addition of water. Curli-PEDOT:PSS composites containing 60% curli fibers exhibited a conductivity 4.5-fold higher than that of pristine PEDOT:PSS. The curli fibers imbued the biocomposites with an immediate water-induced self-healing ability. Further, the addition of curli fibers lowered the Young's and shear moduli of the composites, improving their compatibility for tissue-interfacing applications. Lastly, we showed that genetically engineered fluorescent curli fibers retained their ability to fluoresce within curli-PEDOT:PSS composites. Curli fibers thus allow to modulate a range of properties in conductive PEDOT:PSS composites, broadening the applications of this polymer in biointerfaces and bioelectronics.


Subject(s)
Biocompatible Materials , Polymers , Polymers/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bacteria , Water
5.
Biomed Mater ; 18(1)2022 11 07.
Article in English | MEDLINE | ID: mdl-36301706

ABSTRACT

Collagen has been used as a common template for mineralization and assembly of inorganic particles, because of the special arrangement of its fibrils and the presence of charged residues. Streptococcal bacterial collagen, which is inherently secreted on the surface ofStreptococcus pyogenes, has been progressively used as an alternative for type I animal collagen. Bacterial collagen is rich in charged amino acids, which can act as a substrate for the nucleation and growth of inorganic particles. Here, we show that bacterial collagen can be used to nucleate three different inorganic materials: hydroxyapatite crystals, silver nanoparticles, and silica nanoparticles. Collagen/mineral composites show an even distribution of inorganic particles along the collagen fibers, and the particles have a more homogenous size compared with minerals that are formed in the absence of the collagen scaffold. Furthermore, the gelation of silica occurring during mineralization represents a means to produce processable self-standing collagen composites, which is challenging to achieve with bacterial collagen alone. Overall, we highlight the advantage of simply combining bacterial collagen with minerals to expand their applications in the fields of biomaterials and tissue engineering, especially for bone regenerative scaffolds.


Subject(s)
Metal Nanoparticles , Animals , Silver , Collagen/chemistry , Collagen Type I/chemistry , Silicon Dioxide/chemistry , Minerals , Tissue Scaffolds/chemistry
6.
ACS Synth Biol ; 9(12): 3334-3343, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33237760

ABSTRACT

Nanostructures formed by self-assembled peptides have been increasingly exploited as functional materials for a wide variety of applications, from biotechnology to energy. However, it is sometimes challenging to assemble free short peptides into functional supramolecular structures, since not all peptides have the ability to self-assemble. Here, we report a self-assembly mechanism for short functional peptides that we derived from a class of fiber-forming amyloid proteins called curli. CsgA, the major subunit of curli fibers, is a self-assembling ß-helical subunit composed of five pseudorepeats (R1-R5). We first deleted the internal repeats (R2, R3, R4), known to be less essential for the aggregation of CsgA monomers into fibers, forming a truncated CsgA variant (R1/R5). As a proof-of-concept to introduce functionality in the fibers, we then genetically substituted the internal repeats by a hydroxyapatite (HAP)-binding peptide, resulting in a R1/HAP/R5 construct. Our method thus utilizes the R1/R5-driven self-assembly mechanism to assemble the HAP-binding peptide and form hydrogel-like materials in macroscopic quantities suitable for biomineralization. We confirmed the expression and fibrillar morphology of the truncated and HAP-containing curli-like amyloid fibers. X-ray diffraction and TEM showed the functionality of the HAP-binding peptide for mineralization and formation of nanocrystalline HAP. Overall, we show that fusion to the R1 and R5 repeats of CsgA enables the self-assembly of functional peptides into micron long fibers. Further, the mineral-templating ability that the R1/HAP/R5 fibers possesses opens up broader applications for curli proteins in the tissue engineering and biomaterials fields.


Subject(s)
Durapatite/metabolism , Escherichia coli Proteins/metabolism , Peptides/metabolism , Durapatite/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Nanostructures/chemistry , Peptides/genetics , Plasmids/genetics , Plasmids/metabolism , Protein Aggregates , Protein Subunits/genetics , Protein Subunits/metabolism
7.
Dalton Trans ; 49(18): 6135-6144, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32328598

ABSTRACT

The current work provides a comparative study of the thermoelectric properties of the Sn0.5Ge0.5Te phases doped with Sb and Bi and alloyed with Cu2Te. The Sn0.5Ge0.5Te composition was chosen based on the fact that it delivers the highest ZT value within the Sn1-xGexTe series (x≤ 0.5). Doping Sn0.5Ge0.5Te with electron-richer Sb and Bi improves both the charge transport properties and thermal conductivities. Alloying with Cu2Te optimizes the thermoelectric performance of the samples even further, yielding a ZT value of 0.99 for (Sn0.5Ge0.5)0.91Bi0.06Te(Cu2Te)0.05 at 500 °C. Hall measurements were performed to understand the effects of doping and alloying.

8.
ACS Appl Mater Interfaces ; 8(49): 33916-33923, 2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27960402

ABSTRACT

We investigated the effect of single and multidopants on the thermoelectrical properties of host ZnO films. Incorporation of the single dopant Ga in the ZnO films improved the conductivity and mobility but lowered the Seebeck coefficient. Dual Ga- and In-doped ZnO thin films show slightly decreased electrical conductivity but improved Seebeck coefficient. The variation of thermoelectric properties is discussed in terms of film crystallinity, which is subject to the dopants' radius. Small amounts of In dopants with a large radius may introduce localized regions in the host film, affecting the thermoelectric properties. Consequently, a 1.5 times increase in power factor, three times reduction in thermal conductivity, and 5-fold enhancement in the figure of merit ZT have been achieved at 110 °C. The results also indicate that the balanced control of both electron and lattice thermal conductivities through dopant selection are necessary to attain low total thermal conductivity.

SELECTION OF CITATIONS
SEARCH DETAIL