Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Int J Biol Macromol ; 262(Pt 1): 129350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242400

ABSTRACT

Chitosan-based polymers have enormous structural tendencies to build bioactive materials with novel characteristics, functions, and various applications, mainly in liver tissue engineering (LTE). The specific physicochemical, biological, mechanical, and biodegradation properties give the effective ways to blend these biopolymers with synthetic and natural polymers to fabricate scaffolds matrixes, sponges, and complexes. A variety of natural and synthetic biomaterials, including chitosan (CS), alginate (Alg), collagen (CN), gelatin (GL), hyaluronic acid (HA), hydroxyapatite (HAp), polyethylene glycol (PEG), polycaprolactone (PCL), poly(lactic-co-glycolic) acid (PGLA), polylactic acid (PLA), and silk fibroin gained considerable attention due to their structure-properties relationship. The incorporation of CS within the polymer matrix results in increased mechanical strength and also imparts biological behavior to the designed PU formulations. The significant and growing interest in the LTE sector, this review aims to be a detailed exploration of CS-based polymers biomaterials for LTE. A brief explanation of the sources and extraction, properties, structure, and scope of CS is described in the introduction. After that, a full overview of the liver, its anatomy, issues, hepatocyte transplantation, LTE, and CS LTE applications are discussed.


Subject(s)
Chitosan , Tissue Engineering , Tissue Engineering/methods , Polymers/chemistry , Chitosan/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Liver
3.
Int J Biol Macromol ; 257(Pt 1): 128390, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043657

ABSTRACT

Bio-based materials are rapidly replacing synthetic materials owing to their significant biomedical applications, easy availability, nontoxicity, biodegradability and biocompatibility. Guar gum (GG) is a plant-derived biocompatible and biodegradable polymeric compound found abundantly in nature. It is a non-ionic, hydrophilic carbohydrate and is a cost-effective hydrocolloid polysaccharide considered as a wonderful representative of the new generation of plant gums. Various composites of guar gum with other polymers have been reported in last few decades and they are extensively used in different industries like food, textile, mining, petrochemical, paper and explosives etc. Easy availability, non-toxicity, eco-friendly and biodegradable nature of GG has made it ideal candidate for for drug delivery (DD) applications. GG based hydrogels, films, scaffolds and nanoparticles have been explored widely for their DD applications. These non-toxic DD carriers can be used for targeted drug delivery. This review article directs the current efforts and improvements on GG and GG-based materials to be used in DD.


Subject(s)
Drug Delivery Systems , Polysaccharides , Galactans/chemistry , Plant Gums/chemistry , Mannans/chemistry , Drug Carriers
4.
Chemosphere ; 300: 134525, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35427656

ABSTRACT

Nowadays, pesticides are regarded as the most dangerous of the various organic pollutants, posing substantial environmental and human threats worldwide. Pesticide contamination has become one of the most crucial environmental issues due to its bio-persistence and bioaccumulation. Different conventional methods are being utilized for pesticide removal, yet pesticides are thought to be significantly present in the environment. The development and application of sophisticated wastewater treatment methods are being pursued to remove contaminants effectively, particularly pesticides. In the past several decades, nanoscience and nanotechnology have emerged as essential tools for the identification, removal, and mineralization of persistent pesticides by employing advanced nanomaterials such as pristine titanium dioxide (TiO2), doped TiO2, nanocomposites (NCs) TiO2, and ternary nanocomposites (TNCs) TiO2 by advanced oxidation processes (AOPs). Advancement in the characteristics of TiO2 by doping, co-doping, construction of NCs and TNCs has contributed to the dramatic efficiency up-gradation by reducing band gap, solar active photocatalyst, enhancing PCA, high photostability, chemically inertness and multiple time reusability. Based on previous literature, utilizing La-TiO2 NCs photocatalyst, the mineralization of pesticide (imidacloprid) attained up to 98.17% that is almost 40-53% greater than pristine TiO2. The present review attempt to discuss the recent research performed on TiO2 based nanoparticles (NPs) and NCs for photocatalytic mineralization of various pesticides. The basic mechanism of TiO2 photocatalysis, types of reactors used for photocatalysis, and optimized experimental conditions of TiO2 for pesticides mineralization are discussed.


Subject(s)
Pesticides , Water Purification , Catalysis , Humans , Titanium
5.
Int J Biol Macromol ; 208: 37-44, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35257731

ABSTRACT

The basic aim of the research work is to expand the application range of biomaterials in the field of medical by increasing antibacterial and biocompatible behavior of thermoplastic polyurethanes. Blends of thermoplastic polyurethanes with chitosan and starch were prepared through extrusion process. The effect of polysaccharides (corn starch and chitosan) incorporation in thermoplastic polyurethane matrix and polymers interaction on thermal and morphological aspects was investigated. Possible interaction among chitosan and starch within TPU matrix individually and together in a blend were assessed by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffractometer (XRD). The results indicated that thermoplastic polyurethanes were semi crystalline in nature whereas hydrophilicity of prepared thermoplastic polyurethanes was determined by contact angle. Biological properties endowed that TPU blended with chitosan and starch possessed antibacterial and hemolytic potential. Hence, it can be a suitable candidate for biomedical applications.


Subject(s)
Chitosan , Polyurethanes , Anti-Bacterial Agents , Biocompatible Materials , Chitosan/chemistry , Polyurethanes/chemistry , Starch/chemistry
6.
Int J Biol Macromol ; 154: 1149-1157, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31730950

ABSTRACT

In this work, the preparation of novel biocompatible polyurethane (PU) elastomers were carried out using curcumin and 1,4-butanediol (1,4-BDO) via step growth polymerization reaction of hydroxyl terminated polybutadiene (HTPB), toluene diisocyanate (TDI) and chitin to improve the biocompatibility, antibacterial and antioxidant properties of PU elastomers. Five samples were synthesized by varying moles ratio of curcumin and 1,4-BDO. The structural study of blends was done by FTIR spectroscopy which confirmed the incorporation of curcumin and 1,4-BDO into the polyurethane matrix. TGA analysis of polyurethane (PU) blends showed good thermal stability with 0.25 M curcumin and 1.75 M 1,4-BDO. Measurements of antibacterial properties were done via agar diffusion method which showed outstanding potential against selected strains of bacteria. The results revealed that biocompatibility, antibacterial and antioxidant potential of purposed polyurethanes elastomers were improved by the incorporation of curcumin which might be the precursor of biomedical applications. Collectively, this work is a footstep towards the synthesis of innovative biocompatible materials which made it suitable for biological applications.


Subject(s)
Biocompatible Materials , Butylene Glycols/chemistry , Chitin/chemistry , Elastomers , Polyurethanes/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/pharmacology , Bacillus subtilis/drug effects , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Elastomers/chemical synthesis , Elastomers/pharmacology , Erythrocytes/drug effects , Escherichia coli/drug effects , Humans , Polymerization , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL