Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Acoust Soc Am ; 129(3): 1642-52, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21428527

ABSTRACT

A generation of tissue-specific stable ultrasound contrast agent (UCA) composed of a polymeric capsule with a perfluorocarbone liquid core has become available. Despite promising uses in clinical practice, the acoustical behavior of such UCA suspensions remains unclear. A simulation code (2-D finite-difference time domain, FDTD) already validated for homogeneous particles [Galaz Haiat, Berti, Taulier, Amman and Urbach, (2010). J. Acoust. Soc. Am. 127, 148-154] is used to model the ultrasound propagation in such UCA suspensions at 50 MHz to investigate the sensitivity of the ultrasonic parameters to physical parameters of UCA. The FDTD simulation code is validated by comparison with results obtained using a shell scatterer model. The attenuation coefficient (respectively, the sound velocity) increases (respectively, decreases) from 4.1 to 58.4 dB/cm (respectively, 1495 to 1428 m/s) when the concentration varies between 1.37 and 79.4 mg/ml, while the backscattered intensity increases non-linearly, showing that a concentration of around 30 mg/ml is sufficient to obtain optimal backscattering intensity. The acoustical parameters vary significantly as a function of the membrane thickness, longitudinal and transverse velocity, indicating that mode conversions in the membrane play an important role in the ultrasonic propagation. The results may be used to help manufacturers to conceive optimal liquid-filled UCA suspensions.


Subject(s)
Computer Simulation , Contrast Media , Fluorocarbons , Lactic Acid , Linear Models , Polyglycolic Acid , Ultrasonography , Capsules , Elasticity , Hydrocarbons, Brominated , Motion , Numerical Analysis, Computer-Assisted , Polylactic Acid-Polyglycolic Acid Copolymer , Reproducibility of Results , Time Factors
2.
J Acoust Soc Am ; 127(1): 148-54, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20058958

ABSTRACT

Ultrasonic propagation in suspensions of particles is a difficult problem due to the random spatial distribution of the particles. Two-dimensional finite-difference time domain simulations of ultrasonic propagation in suspensions of polystyrene 5.3 mum diameter microdisks are performed at about 50 MHz. The numerical results are compared with the Faran model, considering an isolated microdisk, leading to a maximum difference of 15% between the scattering cross-section values obtained analytically and numerically. Experiments are performed with suspensions in through transmission and backscattering modes. The attenuation coefficient at 50 MHz (alpha), the ultrasonic velocity (V), and the relative backscattered intensity (I(B)) are measured for concentrations from 2 to 25 mg/ml, obtained by modifying the number of particles. Each experimental ultrasonic parameter is compared to numerical results obtained by averaging the results derived from 15 spatial distributions of microdisks. alpha increases with the concentration from 1 to 17 dB/cm. I(B) increases with concentration from 2 to 16 dB. The variation of V versus concentration is compared with the numerical results, as well as with an effective medium model. A good agreement is found between experimental and numerical results (the larger discrepancy is found for alpha with a difference lower than 2.1 dB/cm).


Subject(s)
Computer Simulation , Models, Theoretical , Suspensions/chemistry , Ultrasonics , Algorithms , Polystyrenes/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL