Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Ecol ; : e17362, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682494

ABSTRACT

The black abalone, Haliotis cracherodii, is a large, long-lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the closure of all U.S. black abalone fisheries since 1993. Current conservation strategies include restoring diminished populations by translocating healthy individuals. However, population collapse on this scale may have dramatically lowered genetic diversity and strengthened geographic differentiation, making translocation-based recovery contentious. Additionally, the current prevalence of WS remains unknown. To address these uncertainties, we sequenced and analysed the genomes of 133 black abalone individuals from across their present range. We observed no spatial genetic structure among black abalone, with the exception of a single chromosomal inversion that increases in frequency with latitude. Outside the inversion, genetic differentiation between sites is minimal and does not scale with either geographic distance or environmental dissimilarity. Genetic diversity appears uniformly high across the range. Demographic inference does indicate a severe population bottleneck beginning just 15 generations in the past, but this decline is short lived, with present-day size far exceeding the pre-bottleneck status quo. Finally, we find the bacterial agent of WS is equally present across the sampled range, but only in 10% of individuals. The lack of population genetic structure, uniform diversity and prevalence of WS bacteria indicates that translocation could be a valid and low-risk means of population restoration for black abalone species' recovery.

2.
bioRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38352393

ABSTRACT

The black abalone, Haliotis cracherodii, is a large, long-lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the species' designation as critically endangered. Current conservation strategies include restoring diminished populations by translocating healthy individuals. However, population collapse on this scale may have dramatically lowered genetic diversity and strengthened geographic differentiation, making translocation-based recovery contentious. Additionally, the current prevalence of WS is unknown. To address these uncertainties, we sequenced and analyzed the genomes of 133 black abalone individuals from across their present range. We observed no spatial genetic structure among black abalone, with the exception of a single chromosomal inversion that increases in frequency with latitude. Genetic divergence between sites is minimal, and does not scale with either geographic distance or environmental dissimilarity. Genetic diversity appears uniformly high across the range. Despite this, however, demographic inference confirms a severe population bottleneck beginning around the time of WS onset, highlighting the temporal offset that may occur between a population collapse and its potential impact on genetic diversity. Finally, we find the bacterial agent of WS is equally present across the sampled range, but only in 10% of individuals. The lack of genetic structure, uniform diversity, and prevalence of WS bacteria indicates that translocation could be a valid and low-risk means of population restoration for black abalone species' recovery.

3.
J Anim Ecol ; 90(9): 2077-2093, 2021 09.
Article in English | MEDLINE | ID: mdl-34002377

ABSTRACT

Although long-term ecological stability is often discussed as a community attribute, it is typically investigated at the species level (e.g. density, biomass), or as a univariate metric (e.g. species diversity). To provide a more comprehensive assessment of long-term community stability, we used a multivariate similarity approach that included all species and their relative abundances. We used data from 74 sites sampled annually from 2006 to 2017 to examine broad temporal and spatial patterns of change within rocky intertidal communities along the west coast of North America. We explored relationships between community change (inverse of stability) and the following potential drivers of change/stability: (a) marine heatwave events; (b) three attributes of biodiversity: richness, diversity and evenness and (c) presence of the mussel, Mytilus californianus, a dominant space holder and foundation species in this system. At a broad scale, we found an inverse relationship between community stability and elevated water temperatures. In addition, we found substantial differences in stability among regions, with lower stability in the south, which may provide a glimpse into the patterns expected with a changing climate. At the site level, community stability was linked to high species richness and, perhaps counterintuitively, to low evenness, which could be a consequence of the dominance of mussels in this system. Synthesis. Assessments of long-term stability at the whole-community level are rarely done but are key to a comprehensive understanding of the impacts of climate change. In communities structured around a spatially dominant species, long-term stability can be linked to the stability of this 'foundation species', as well as to traditional predictors, such as species richness.


Subject(s)
Bivalvia , Ecosystem , Animals , Biodiversity , Biomass , North America
SELECTION OF CITATIONS
SEARCH DETAIL
...