Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Parasit Vectors ; 16(1): 99, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36922882

ABSTRACT

BACKGROUND: The Getah virus (GETV) is a mosquito-borne Alphavirus (family Togaviridae) that is of significant importance in veterinary medicine. It has been associated with major polyarthritis outbreaks in animals, but there are insufficient data on its clinical symptoms in humans. Serological evidence of GETV exposure and the risk of zoonotic transmission makes GETV a potentially medically relevant arbovirus. However, minimal emphasis has been placed on investigating GETV vector transmission, which limits current knowledge of the factors facilitating the spread and outbreaks of GETV. METHODS: To examine the range of the mosquito hosts of GETV, we selected medically important mosquitoes, assessed them in vitro and in vivo and determined their relative competence in virus transmission. The susceptibility and growth kinetics of GETVs in various mosquito-derived cell lines were also determined and quantified using plaque assays. Vector competency assays were also conducted, and quantitative reverse transcription-PCR and plaque assays were used to determine the susceptibility and transmission capacity of each mosquito species evaluated in this study. RESULTS: GETV infection in all of the investigated mosquito cell lines resulted in detectable cytopathic effects. GETV reproduced the fastest in Culex tritaeniorhynchus- and Aedes albopictus-derived cell lines, as evidenced by the highest exponential titers we observed. Regarding viral RNA copy numbers, mosquito susceptibility to infection, spread, and transmission varied significantly between species. The highest vector competency indices for infection, dissemination and transmission were obtained for Cx. tritaeniorhynchus. This is the first study to investigate the ability of Ae. albopictus and Anopheles stephensi to transmit GETV, and the results emphasize the role and capacity of other mosquito species to transmit GETV upon exposure to GETV, in addition to the perceived vectors from which GETV has been isolated in nature. CONCLUSIONS: This study highlights the importance of GETV vector competency studies to determine all possible transmission vectors, especially in endemic regions.


Subject(s)
Aedes , Alphavirus , Culex , Humans , Animals , Alphavirus/genetics , Host Specificity , Mosquito Vectors
3.
Sci Adv ; 8(51): eabq7345, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542722

ABSTRACT

Aedes aegypti (Linnaeus, 1762) is the main mosquito vector for dengue and other arboviral infectious diseases. Control of this important vector highly relies on the use of insecticides, especially pyrethroids. The high frequency (>78%) of the L982W substitution was detected at the target site of the pyrethroid insecticide, the voltage-gated sodium channel (Vgsc) of A. aegypti collected from Vietnam and Cambodia. Alleles having concomitant mutations L982W + F1534C and V1016G + F1534C were also confirmed in both countries, and their frequency was high (>90%) in Phnom Penh, Cambodia. Strains having these alleles exhibited substantially higher levels of pyrethroid resistance than any other field population ever reported. The L982W substitution has never been detected in any country of the Indochina Peninsula except Vietnam and Cambodia, but it may be spreading to other areas of Asia, which can cause an unprecedentedly serious threat to the control of dengue fever as well as other Aedes-borne infectious diseases.


Subject(s)
Aedes , Communicable Diseases , Dengue , Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Insecticide Resistance/genetics , Mutation , Aedes/genetics , Asia , Dengue/epidemiology , Dengue/genetics
4.
J Tradit Complement Med ; 12(3): 260-268, 2022 May.
Article in English | MEDLINE | ID: mdl-35493314

ABSTRACT

Background and aim: African trypanosomiasis poses serious health and economic concerns to humans and livestock in several sub-Saharan African countries. The aim of the present study was to identify the antitrypanosomal compounds from B. pilosa (whole plant) through a bioactivity-guided isolation and investigate the in vitro effects and mechanisms of action against Trypanosoma brucei (T. brucei). Experimental procedure: Crude extracts and fractions were prepared from air-dried pulverized plant material of B. pilosa using the modified Kupchan method of solvent partitioning. The antitrypanosomal activities of the fractions were determined through cell viability analysis. Effects of fractions on cell death and cell cycle of T. brucei were determined using flow cytometry, while fluorescence microscopy was used to investigate alterations in cell morphology and distribution. Results and conclusion: The solvent partitioning dichloromethane (BPFD) and methanol (BPFM) fractions of B. pilosa exhibited significant activities against T. brucei with respective half-maximal inhibitory concentrations (IC50s) of 3.29 µg/ml and 5.86 µg/ml and resulted in the formation of clumpy subpopulation of T. brucei cells. Butyl (compound 1) and propyl (compound 2) esters of tryptophan were identified as the major antitrypanosomal compounds of B. pilosa. Compounds 1 and 2 exhibited significant antitrypanosomal effects with respective IC50 values of 0.66 and 1.46 µg/ml. At the IC50 values, both compounds significantly inhibited the cell cycle of T. brucei at the G0-G1 phase while causing an increase in G2-M phase. The results suggest that tryptophan esters may possess useful chemotherapeutic properties for the control of African trypanosomiasis.

5.
Arch Virol ; 167(1): 123-130, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34757503

ABSTRACT

Ticks are blood-sucking arthropods that transmit many pathogens, including arboviruses. Arboviruses transmitted by ticks are generally referred to as tick-borne viruses (TBVs). TBVs are known to cause diseases in humans, pets, and livestock. There is, however, very limited information on the occurrence and distribution of TBVs in sub-Saharan Africa. This study was designed to determine the presence and distribution of ticks infesting dogs and cattle in Ghana, as well as to identify the tick-borne or tick-associated viruses they harbour. A more diverse population of ticks was found to infest cattle (three genera) relative to those infesting dogs (one genus). Six phleboviruses and an orthonairovirus were detected in tick pools screened by RT-PCR. Subsequent sequence analysis revealed two distinct phleboviruses and the previously reported Odaw virus in ticks collected from dogs and a virus (16GH-T27) most closely related to four unclassified phleboviruses in ticks collected from cattle. The virus 16GH-T27 was considered a strain of Balambala tick virus (BTV) and named BTV strain 16GH-T27. Next-generation sequencing analysis of the BTV-positive tick pool detected only the L and S segments. Phylogenetic analysis revealed that BTV clustered with viruses previously defined as M-segment-deficient phleboviruses. The orthonairovirus detected in ticks collected from cattle was confirmed to be the medically important Dugbe virus. Furthermore, we discuss the importance of understanding the presence and distribution of ticks and TBVs in disease prevention and mitigation and the implications for public health. Our findings contribute to the knowledge pool on TBVs and tick-associated viruses.


Subject(s)
Phlebovirus , Tick-Borne Diseases , Ticks , Animals , Cattle , Dogs , Ghana/epidemiology , Phylogeny , Satellite Viruses , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary
6.
Am J Trop Med Hyg ; 105(3): 813-817, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34280147

ABSTRACT

Japanese encephalitis virus (JEV) is transmitted between swine, migratory birds, and Culex mosquitoes, and has circulated indigenously in Asia for almost a century. Despite being the country with the highest JEV diversity, surveillance targeting of Indonesia's vectors is scarce. This study collected mosquitoes from several locations in Tabanan Regency, Bali Island, Indonesia. We captured and classified 3,032 adult Culex mosquitoes into seven species, with Culex vishnui subgroup mosquitoes making up approximately 90% of the total. Japanese encephalitis virus was identified by next-generation sequencing (NGS) analysis of a Cx. vishnui mosquito pool. Genetic and phylogenetic analysis revealed the JEV as genotype (G) IV. The nucleotide identity was 99% with other JEV GIV isolates obtained from swine sera in 2017 on Bali Island and from a human patient in Australia with a travel history to Bali in 2019. This finding indicated that JEV GIV persists in restricted areas and is circulating between swine-mosquito vectors.


Subject(s)
Culex/virology , Encephalitis Virus, Japanese/isolation & purification , Insect Vectors/virology , Animals , Encephalitis Virus, Japanese/genetics , Genotype , Indonesia
7.
J Tradit Complement Med ; 11(3): 249-258, 2021 May.
Article in English | MEDLINE | ID: mdl-34012871

ABSTRACT

BACKGROUND AND AIM: Most developing countries resort to medicinal plants for treating diseases, but few of these have scientific backing for their use. The aim of the study was to validate traditional use of Morinda lucida leaves in treating inflammation and determine the mechanism of action. EXPERIMENTAL PROCEDURE: Effect of hydroethanolic leaf extract of M. lucida (HEML) on localized inflammation was evaluated using rat paw edema presented by sub-planter injections of λ-carrageenan, histamine or serotonin in separate experiments. Systemic inflammation was evaluated by lipopolysaccharide (LPS)-induced hyperthermia. Antioxidant activity of HEML was also evaluated using the free-radical scavenging assay. RESULTS AND CONCLUSION: No mortalities were recorded in acute toxicity assay after administering 5000 mg/kg HEML to rats. It showed very good activity against localized and systemic inflammation in inverse dose-dependent manner and caused reduction in nitric oxide and prostaglandin E-2 levels by affecting expression of inducible nitric oxide synthase, but not cyclooxygenases-2 in LPS-activated RAW 264.7 murine macrophages. HEML reduced pro-inflammatory cytokines interleukin (IL)-1ß and tumor necrotic factor, but elevated levels of anti-inflammatory cytokine IL-10 in vitro. HEML contains saponins, reducing sugars, polyphenols and flavonoids and showed antioxidant activity with EC50 = 0.6415 ± 0.0027 mg/ml. In conclusion, this study provides evidence that HEML possesses anti-inflammatory activity, possibly through modulation of production of early/late phase inflammation mediators.

8.
Parasit Vectors ; 14(1): 228, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33926510

ABSTRACT

BACKGROUND: Dengue virus (DENV) is a mosquito-borne arbovirus transmitted by Aedes mosquitoes, but is not endemic in all areas where this vector is found. For example, the relatively sparse distribution of cases in West Africa is generally attributed to the refractory nature of West African Aedes aegypti (Ae. aegypti) to DENV infection, and particularly the forest-dwelling Ae. aegypti formosus. However, recent studies have shown these mosquitoes to be competent vectors within some West African countries that have suffered outbreaks in the past, such as Senegal. There is however little information on the vector competence of the Ae. aegypti in West African countries such as Ghana with no reported outbreaks. METHODS: This study examined the vector competence of 4 Ae. aegypti colonies from urban, semi-urban, and two rural locations in Ghana in transmitting DENV serotypes 1 and 2, using a single colony from Vietnam as control. Midgut infection and virus dissemination were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), while the presence and concentration of DENV in the saliva of infectious mosquitoes was determined by the focus forming assay. RESULTS: There were significant differences in the colonies' susceptibility to virus infection, dissemination, and transmission. All examined Ghanaian mosquitoes were refractory to infection by DENV serotype 2, while some colonies exhibited potential to transmit DENV serotype 1. None of the tested colonies were as competent as the control group colony. CONCLUSIONS: These findings give insight into the possible risk of outbreaks, particularly in the urban areas in the south of Ghana, and highlight the need for continuous surveillance to determine the transmission status and outbreak risk. This study also highlights the need to prevent importation of different DENV strains and potential invasion of new highly vector-competent Ae. aegypti strains, particularly around the ports of entry.


Subject(s)
Aedes/virology , Dengue Virus/isolation & purification , Serogroup , Animals , Dengue/transmission , Disease Vectors , Ghana , Humans , Mosquito Vectors/virology , Saliva/virology
9.
J Med Entomol ; 58(2): 880-890, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33710314

ABSTRACT

Tabanid flies (Tabanidae: Diptera) are common hematophagous insects known to transmit some pathogens mechanically or biologically to animals; they are widely distributed throughout the world. However, no tabanid-borne viruses, except mechanically transmitted viruses, have been reported to date. In this study, we conducted RNA virome analysis of several human-biting tabanid species in Japan, to discover and characterize viruses associated with tabanids. A novel flavivirus was encountered during the study in the Japanese horse fly, Tabanus rufidens (Bigot, 1887). The virus was detected only in T. rufidens, but not in other tabanid species, and as such was designated Tabanus rufidens flavivirus (TrFV). TrFV could not be isolated using a mammalian cell line and showed a closer phylogenetic relationship to the classical insect-specific flaviviruses (cISFs) rather than the vertebrate-infecting flaviviruses (VIFs), suggesting that it is a novel member of the cISFs. The first discovery of a cISF from Brachycera provides new insight into the evolutionary history and dynamics of flaviviruses.


Subject(s)
Diptera/virology , Flavivirus , Host Microbial Interactions , Phylogeny , Animals , Biological Coevolution , Flavivirus/classification , Flavivirus/genetics , Flavivirus/isolation & purification , Genes, Viral , Genome, Viral , RNA/genetics , Virome/genetics
10.
Virus Res ; 292: 198254, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33276024

ABSTRACT

Viruses are highly diverse and are the sole agents that can infect organisms in all domains of life. Viruses are defined as capsid-encoding organisms as opposed to ribosome-encoding cellular organisms. However, recent advances in virology indicate the existence of unique viruses that do not meet this basic definition, such as capsidless viruses. During virome analysis of the soft tick Argas japonicus, we identified virus-like sequences closely related to the members of genus Nyavirus (family Nyamiviridae). Further analysis revealed sequences derived from a novel nyavirus that lacks two structural protein genes, matrix (M) and glycoprotein (G). This unique nyavirus is tentatively named Sekira virus (SEKRV). To our knowledge, this is the first study to report a nyavirus deficient in M and G genes in nature. The mechanism of infection, replication, and persistence of SEKRV remain unknown, yet this finding provides new insight into virus evolution and the diverse way of viral life in nature.


Subject(s)
Argas/virology , Glycoproteins/deficiency , Viral Matrix Proteins/deficiency , Viruses/isolation & purification , Animals , Evolution, Molecular , Glycoproteins/genetics , Phylogeny , Viral Matrix Proteins/genetics , Virus Replication , Viruses/classification , Viruses/genetics
11.
PLoS Negl Trop Dis ; 14(12): e0008986, 2020 12.
Article in English | MEDLINE | ID: mdl-33370301

ABSTRACT

Japanese encephalitis virus (JEV) is maintained in an enzootic cycle between swine, water birds, and mosquitoes. JEV has circulated indigenously in Asia, with Culex tritaeniorhynchus as the primary vector. In some areas where the primary vector is scarce or absent, sporadic cases of Japanese encephalitis have been reported, with Aedes japonicus japonicus presumed to have the potential as a secondary vector. As one of the world's most invasive culicid species, Ae. j. japonicus carries a considerable health risk for spreading diseases to wider areas, including Europe and North America. Thus, evaluation of its competency as a JEV vector, particularly in a native population, will be essential in preventing potential disease spread. In this study, the two mosquito species' vector competence in transmitting three JEV genotypes (I, III, and V) was assessed, with Cx. tritaeniorhynchus serving as a point of reference. The mosquitoes were virus-fed and the infection rate (IR), dissemination rate (DR), and transmission rate (TR) evaluated individually by either RT-qPCR or focus forming assay. Results showed striking differences between the two species, with IR of 95% (261/274) and 9% (16/177) in Cx. tritaeniorhynchus and Ae. j. japonicus, respectively. Both mosquitoes were susceptible to all three JEV genotypes with significant differences in IR and mean viral titer. Results confirm the primary vector's competence, but the fact that JEV was able to establish in Ae. j. japonicus is of public health significance, and with 2%-16% transmission rate it has the potential to successfully transmit JEV to the next host. This may explain the human cases and infrequent detection in primary vector-free areas. Importantly, Ae. j. japonicus could be a relevant vector spreading the disease into new areas, indicating the need for security measures in areas where the mosquito is distributed or where it may be introduced.


Subject(s)
Aedes/virology , Culex/virology , Encephalitis Virus, Japanese/growth & development , Encephalitis Virus, Japanese/isolation & purification , Encephalitis, Japanese/transmission , Mosquito Vectors/virology , Animals , Asia/epidemiology , Cell Line , Chlorocebus aethiops , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/epidemiology , Genotype , Humans , Vero Cells , Viral Envelope Proteins/genetics
12.
In Vitro Cell Dev Biol Anim ; 56(9): 792-798, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33000384

ABSTRACT

Mosquitoes are generally considered one of the most important vectors of arboviruses, with Aedes aegypti regarded as the most important in transmission of yellow fever and dengue viruses. To investigate why there are differences in the incidence of dengue fever and Zika in different geographical areas and an absence of outbreaks in Ghana in spite of an abundance of A. aegypti mosquitoes, we established a continuous cell line from embryonic cells of A. aegypti collected in Ghana and assessed its susceptibility to dengue, yellow fever, and Zika viruses. The new cell line (designated AeAe-GH98), having an adhesive spindle-shaped web-like morphology, was serially subcultured in both VP-12 and Schneider's medium supplemented with 10% heat-inactivated fetal bovine serum. AeAe-GH98 cells were found to have a population doubling time of 1.3 d during exponential growth. The mosquito colony used to establish the cell line was confirmed to have originated from Africa using microsatellite assay. In terms of susceptibility to Aedes-borne flaviviruses, AeAe-GH98 cells were found to have different degrees of susceptibility to yellow fever, Zika, and dengue virus infection and propagation. While susceptibility of AeAe-GH98 cells to yellow fever and Zika viruses was comparable with that of C6/36 cells, susceptibility to dengue virus was significantly lower. This cell line will serve as a useful tool for determining molecular factors influencing virus-vector susceptibility in vitro.


Subject(s)
Aedes/virology , Flaviviridae/physiology , Aedes/cytology , Animals , Cell Line , Cell Proliferation , Cell Shape , Cells, Cultured , Dengue Virus/physiology , Discriminant Analysis , Ghana , Karyotyping , Principal Component Analysis , Yellow fever virus/physiology , Zika Virus/physiology
13.
Viruses ; 12(3)2020 02 28.
Article in English | MEDLINE | ID: mdl-32121094

ABSTRACT

Japanese encephalitis (JE) remains a public health concern in several countries, and the Culex mosquito plays a central role in its transmission cycle. Culex mosquitoes harbor a wide range of viruses, including insect-specific viruses (ISVs), and can transmit a variety of arthropod-borne viruses (arboviruses) that cause human and animal diseases. The current trend of studies displays enhanced efforts to characterize the mosquito virome through bulk RNA sequencing due to possible arbovirus-ISV interactions; however, the extent of viral diversity in the mosquito taxon is still poorly understood, particularly in some disease vectors. In this study, arboviral screening and RNA virome analysis of Culex tritaeniorhynchus and C. pseudovishnui, which are part of the Culex vishnui subgroup mosquitoes, were performed. Results from these two mosquito species, known as the major vectors of JE virus (JEV) in Asia, collected in three prefectures in Japan were also compared with the sympatric species C. inatomii. A total of 27 viruses, including JEV, were detected from these Culex mosquitoes. Molecular and phylogenetic analyses of the detected viruses classified 15 of the 27 viruses as novel species, notably belonging to the Flaviviridae, Rhabdoviridae, Totiviridae, and Iflaviridae families. The successful isolation of JEV genotype I confirmed its continuous presence in Japan, suggesting the need for periodic surveillance. Aside from JEV, this study has also reported the diversity of the RNA virome of disease vectors and broadened the knowledge on mosquito virome profiles containing both arbovirus and ISV. Mosquito taxon seemed to contribute largely to the virome structure (e.g., virome composition, diversity, and abundance) as opposed to the geographical location of the mosquito species. This study therefore offers notable insights into the ecology and evolution of each identified virus and viral family. To the authors' knowledge, this is the first study to characterize the viromes of the major JE vectors in Japan.


Subject(s)
Culex/virology , Encephalitis Viruses, Japanese/physiology , Encephalitis, Japanese/transmission , Encephalitis, Japanese/virology , Mosquito Vectors/virology , Virome , Animals , Biodiversity , Culex/classification , Encephalitis, Japanese/epidemiology , Genome, Viral , Geography, Medical , Japan/epidemiology , Metagenome , Metagenomics/methods , Mosquito Vectors/classification , Phylogeny , Public Health Surveillance , Viruses/classification , Viruses/genetics
14.
Viruses ; 12(2)2020 01 27.
Article in English | MEDLINE | ID: mdl-32012771

ABSTRACT

Entomological surveillance is one of the tools used in monitoring and controlling vector-borne diseases. However, the use of entomological surveillance for arboviral infection vector control is often dependent on finding infected individuals. Although this method may suffice in highly endemic areas, it is not as effective in controlling the spread of diseases in low endemic and non-endemic areas. In this study, we examined the efficiency of using entomological markers to assess the status and risk of arbovirus infection in Ghana, which is considered a non-endemic country, by combining mosquito surveillance with virus isolation and detection. This study reports the presence of cryptic species of mosquitoes in Ghana, demonstrating the need to combine morphological identification and molecular techniques in mosquito surveillance. Furthermore, although no medically important viruses were detected, the importance of insect-specific viruses in understanding virus evolution and arbovirus transmission is discussed. This study reports the first mutualistic relationship between dengue virus and the double-stranded RNA Aedes aegypti totivirus. Finally, this study discusses the complexity of the virome of Aedes and Culex mosquitoes and its implication for arbovirus transmission.


Subject(s)
Aedes/virology , Arbovirus Infections/transmission , Arboviruses/genetics , Culex/virology , Mosquito Vectors/virology , Virome , Animals , Arbovirus Infections/epidemiology , Arboviruses/isolation & purification , Dengue/epidemiology , Dengue Virus/genetics , Dengue Virus/pathogenicity , Entomology/methods , Female , Ghana/epidemiology , Male , Risk Factors , Vector Borne Diseases/epidemiology , Vector Borne Diseases/virology
15.
Ticks Tick Borne Dis ; 11(2): 101364, 2020 03.
Article in English | MEDLINE | ID: mdl-31928929

ABSTRACT

Tick-borne viruses have emerged recently in many parts of the world, and the discoveries of novel tick-borne viruses have been accelerated by the development of high-throughput sequencing technology. In this study, a cost-efficient small benchtop next-generation sequencer, the Illumina MiniSeq, was used for the RNA virome analysis of questing ticks collected from Hokuriku District, Japan, and assessed for their potential utility in a tick-borne virus surveillance system. We detected two phleboviruses [Kabuto Mountain virus (KAMV) and Okutama tick virus (OKTV)], a coltivirus [Tarumizu tick virus (TarTV)], and a novel iflavirus [Hamaphysalis flava iflavirus (HfIFV)] from tick homogenates and/or cell culture supernatants after virus isolation processes. The number of sequence reads from KAMV and TarTV markedly increased when cell culture supernatants were used, indicating a successful isolation of these viruses. In contrast, OKTV and HfIFV were detected only in tick homogenates but not from cell culture supernatants, suggesting a failure to isolate these viruses. Furthermore, we performed genomic and phylogenetic analyzes of these detected viruses. OKTV and some phleboviruses discovered recently by NGS-based methods were probably deficient in the M genome segment, which are herein proposed as M segment-deficient phlebovirus (MdPV). A phylogenetic analysis of phleboviruses, including MdPV, suggested that Uukuniemi and Kaisodi group viruses and kabutoviruses evolved from an ancestral MdPV, which provides insights into the evolutionary dynamics of phleboviruses as emerging pathogens.


Subject(s)
RNA Viruses/isolation & purification , RNA/analysis , Ticks/virology , Virome , Animals , Base Sequence , Female , Japan , Larva/growth & development , Larva/virology , Male , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , Sequence Alignment , Ticks/growth & development
16.
Front Microbiol ; 11: 620623, 2020.
Article in English | MEDLINE | ID: mdl-33552030

ABSTRACT

Late male-killing, a male-specific death after hatching, is a unique phenotype found in Homona magnanima, oriental tea tortrix. The male-killing agent was suspected to be an RNA virus, but details were unknown. We herein successfully isolated and identified the putative male-killing virus as Osugoroshi viruses (OGVs). The three RNA-dependent RNA polymerase genes detected were phylogenetically related to Partitiviridae, a group of segmented double-stranded RNA viruses. Purified dsRNA from a late male-killing strain of H. magnanima revealed 24 segments, in addition to the RdRps, with consensus terminal sequences. These segments included the previously found male-killing agents MK1068 (herein OGV-related RNA16) and MK1241 (OGV-related RNA7) RNAs. Ultramicroscopic observation of purified virions, which induced late male-killing in the progeny of injected moths, showed sizes typical of Partitiviridae. Mathematical modeling showed the importance of late male-killing in facilitating horizontal transmission of OGVs in an H. magnanima population. This study is the first report on the isolation of partiti-like virus from insects, and one thought to be associated with late male-killing, although the viral genomic contents and combinations in each virus are still unknown.

17.
Article in English | MEDLINE | ID: mdl-31354849

ABSTRACT

African trypanosomiasis is a disease caused by the parasitic protozoa of the Trypanosoma genus. Despite several efforts at chemotherapeutic interventions, the disease poses serious health and economic concerns to humans and livestock of many sub-Saharan African countries. Zanthoxylum zanthoxyloides (Lam.) Zepern. & Timler (Z. zanthoxyloides LZT) is a plant species of important phytochemical and pharmacological relevance in the subtropical zones of the African continent. However, the mechanisms of its antitrypanosomal effects in African trypanosomes remain to be elucidated. The aim of the study was to determine the in vitro effects and mechanisms of action of Z. zanthoxyloides LZT (root) fractions against Trypanosoma brucei. T. brucei (GUTat 3.1 strain), L. donovani (D10 strain), P. falciparum (3D 7 strain), Jurkat cells, and Chang liver cells were cultivated in vitro to the log phase in their respective media at 37°C. Crude extracts and fractions were prepared from air-dried pulverized plant material of Z. zanthoxyloides LZT (root) using the modified Kupchan method of solvent partitioning. Half-maximal inhibitory concentrations (IC50) were determined through the alamar blue cell viability assay. Effects of fractions on cell death and cell cycle of T. brucei were determined using flow cytometry. Fluorescence microscopy was used to investigate the effects of fractions on the morphology and distribution of T. brucei. Antitrypanosomal compounds of fractions were characterized using high-performance liquid chromatography (HPLC) and attenuated total reflectance infrared (ATR-IR) spectroscopy. Methanol, butanol, and dichloromethane fractions were selectively active against T. brucei with respective IC50 values of 3.89, 4.02, and 5.70 µg/ml. Moreover, methanol, butanol, and dichloromethane fractions significantly induced apoptosis-like cell death with remarkable alteration in the cell cycle of T. brucei. Furthermore, dichloromethane and methanol fractions altered the morphology, induced aggregation, and altered the ratio of nuclei to kinetoplasts in the parasite. The HPLC chromatograms and ATR-IR spectra of the active fractions suggested the presence of aromatic hydrocarbons with hydroxyl, carbonyl, amine, or amide functional groups. The results suggest that Z. zanthoxyloides LZT have potential chemotherapeutic effects on African trypanosomes with implications for novel therapeutic interventions in African trypanosomiasis.

18.
PLoS Negl Trop Dis ; 13(3): e0007235, 2019 03.
Article in English | MEDLINE | ID: mdl-30908481

ABSTRACT

Visceral leishmaniasis (VL) is a major problem worldwide and causes significant morbidity and mortality. Existing drugs against VL have limitations, including their invasive means of administration long duration of treatment regimens. There are also concerns regarding increasing treatment relapses as well as the identification of resistant clinical strains with the use of miltefosine, the sole oral drug for VL. There is, therefore, an urgent need for new alternative oral drugs for VL. In the present study, we show the leishmanicidal effect of a novel, oral antimalarial endoperoxide N-251. In our In vitro studies, N-251 selectively and specifically killed Leishmania donovani D10 amastigotes with no accompanying toxicity toward the host cells. In addition, N-251 exhibited comparable activities against promastigotes of L. donovani D10, as well as other L. donovani complex parasites, suggesting a wide spectrum of activity. Furthermore, even after a progressive infection was established in mice, N-251 significantly eliminated amastigotes when administered orally. Finally, N-251 suppressed granuloma formation in mice liver through parasite death. These findings indicate the therapeutic effect of N-251 as an oral drug, hence suggest N-251 to be a promising lead compound for the development of a new oral chemotherapy against VL.


Subject(s)
Antimalarials/administration & dosage , Antiprotozoal Agents/administration & dosage , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Spiro Compounds/administration & dosage , Tetraoxanes/administration & dosage , Animals , Antimalarials/pharmacology , Antiprotozoal Agents/pharmacology , Cell Survival/drug effects , Disease Models, Animal , Leishmania donovani/physiology , Leishmaniasis, Visceral/pathology , Liver/pathology , Mice, Inbred BALB C , Spiro Compounds/pharmacology , Tetraoxanes/pharmacology , Treatment Outcome
19.
Phytother Res ; 32(8): 1617-1630, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29733118

ABSTRACT

Trypanosomiasis, leishmaniasis, and malaria are protozoan infections of public health importance with thousands of new cases recorded annually. Control of these infection(s) with existing chemotherapy is limited by drug toxicity, lengthy parenteral treatment, affordability, and/or the emergence of resistant strains. Medicinal plants on the other hand are used in the treatment of various infectious diseases although their chemical properties are not fully evaluated. In this study, we screened 112 crude extracts from 72 selected Ghanaian medicinal plants for anti-Trypanosoma, anti-Leishmania, and anti-Plasmodium activities in vitro and investigated their mechanisms of action. Twenty-three extracts from 20 plants showed significant antiprotozoan activity against at least 1 of 3 protozoan parasites screened with IC50 values less than 20 µg/ml. Eleven extracts showed high anti-Trypanosoma activity with Bidens pilosa whole plant and Morinda lucida leaf extracts recording the highest activities. Their IC50 (selectivity index [SI]) values were 5.51 µg/ml (35.00) and 5.96 µg/ml (13.09), respectively. Nine extracts had high anti-Leishmania activity with Annona senegalensis and Cassia alata leaf extracts as the most active. Their IC50 (SI) values were 10.8 µg/ml (1.50) and 10.1 µg/ml (0.37), respectively. Six extracts had high anti-Plasmodium activity with the leaf and stem-bark extracts of Terminalia ivorensis recording the highest activity. Their IC50 (SI) values were 7.26 µg/ml (129.36) and 17.45 µg/ml (17.17), respectively. Only M. lucida at 25 µg/ml induced significant apoptosis-like cell death in Trypanosoma parasites. Anti-Leishmania active extracts induced varying morphological changes in Leishmania parasites such as multiple nuclei and/or kinetoplast, incomplete flagella division, or nuclear fragmentation. Active extracts may be potential sources for developing new chemotherapy against these infections.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Plasmodium/drug effects , Trypanosoma/drug effects , Apoptosis , Ghana , Humans , Jurkat Cells
20.
Trop Med Health ; 44: 25, 2016.
Article in English | MEDLINE | ID: mdl-27536194

ABSTRACT

Leishmaniasis is an infectious disease transmitted by the sand fly. It is caused by over 20 different species of Leishmania and has affected over 14 million people worldwide. One of the main forms of control of leishmaniasis is chemotherapy, but this is limited by the high cost and/or toxicity of available drugs. We previously found three novel compounds with an iridoid tetracyclic skeleton to have activity against trypanosome parasites. In this study, we determined the activity of the three anti-trypanosome compounds against Leishmania using field strain, 010, and the lab strain Leishmania hertigi. The minimum inhibitory concentration (MIC) of the compounds against 010 was determined by microscopy while the IC50 of compounds against L. hertigi was determined by fluorescence-activated cell sorting with Guava viacount analysis. We found two of the three compounds, molucidin and ML-F52, to have anti-Leishmania activity against both strains. The fluor-microscope observation with DAPI stain revealed that both Molucidin and ML-F52 induced abnormal parasites with two sets of nucleus and kinetoplast in a cell, suggesting that compounds might inhibit cytokinesis in Leishmania parasites. Molucidin and ML-F52 might be good lead compounds for the development of new anti-Leishmania chemotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...