Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
iScience ; 27(9): 110703, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39252977

ABSTRACT

Cystic fibrosis (CF) is a genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Despite reports of CFTR expression on endothelial cells, pulmonary vascular perturbations, and perfusion deficits in CF patients, the mechanism of pulmonary vascular disease in CF remains unclear. Here, our pilot study of 40 CF patients reveals a loss of small pulmonary blood vessels in patients with severe lung disease. Using a vessel-on-a-chip model, we establish a shear-stress-dependent mechanism of endothelial barrier failure in CF involving TRPV4, a mechanosensitive channel. Furthermore, we demonstrate that CFTR deficiency downregulates the function of PIEZO1, another mechanosensitive channel involved in angiogenesis and wound repair, and exacerbates loss of small pulmonary blood vessel. We also show that CFTR directly interacts with PIEZO1 and enhances its function. Our study identifies key cellular targets to mitigate loss of small pulmonary blood vessels in CF.

2.
Physiology (Bethesda) ; 39(4): 0, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38501963

ABSTRACT

Cystic fibrosis (CF) is an inherited disorder caused by a deleterious mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Given that the CFTR protein is a chloride channel expressed on a variety of cells throughout the human body, mutations in this gene impact several organs, particularly the lungs. For this very reason, research regarding CF disease and CFTR function has historically focused on the lung airway epithelium. Nevertheless, it was discovered more than two decades ago that CFTR is also expressed and functional on endothelial cells. Despite the great strides that have been made in understanding the role of CFTR in the airway epithelium, the role of CFTR in the endothelium remains unclear. Considering that the airway epithelium and endothelium work in tandem to allow gas exchange, it becomes very crucial to understand how a defective CFTR protein can impact the pulmonary vasculature and overall lung function. Fortunately, more recent research has been dedicated to elucidating the role of CFTR in the endothelium. As a result, several vascular dysfunctions associated with CF disease have come to light. Here, we summarize the current knowledge on pulmonary vascular dysfunctions in CF and discuss applicable therapies.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Lung , Humans , Cystic Fibrosis/physiopathology , Cystic Fibrosis/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Animals , Lung/metabolism , Lung/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Endothelium, Vascular/pathology , Mutation , Pulmonary Circulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL