Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Noncoding RNA Res ; 9(2): 523-535, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511059

ABSTRACT

The discovery of disease-specific biomarkers, such as microRNAs (miRNAs), holds the potential to transform the landscape of Amyotrophic Lateral Sclerosis (ALS) by facilitating timely diagnosis, monitoring treatment response, and accelerating drug discovery. Such advancement could ultimately improve the quality of life and survival rates for ALS patients. Despite more than a decade of research, no miRNA biomarker candidate has been translated into clinical practice. We conducted a systematic review and meta-analysis to quantitatively synthesize data from original studies that analyzed miRNA expression from liquid biopsies via PCR and compared them to healthy controls. Our analysis encompasses 807 miRNA observations from 31 studies, stratified according to their source tissue. We identified consistently dysregulated miRNAs in serum (hsa-miR-3665, -4530, -4745-5p, -206); blood (hsa-miR-338-3p, -183-5p); cerebrospinal fluid (hsa-miR-34a-3p); plasma (hsa-miR-206); and neural-enriched extracellular vesicles from plasma (hsa-miR-146a-5p, -151a-5p, -10b-5p, -29b-3p, and -4454). The meta-analyses provided further support for the upregulation of hsa-miR-206, hsa-miR-338-3p, hsa-miR-146a-5p and hsa-miR-151a-5p, and downregulation of hsa-miR-183-5p, hsa-miR-10b-5p, hsa-miR-29b-3p, and hsa-miR-4454 as consistent indicators of ALS across independent studies. Our findings provide valuable insights into the current understanding of miRNAs' dysregulated expression in ALS patients and on the researchers' choices of methodology. This work contributes to the ongoing efforts towards discovering disease-specific biomarkers.

2.
Front Cell Dev Biol ; 10: 962881, 2022.
Article in English | MEDLINE | ID: mdl-36105357

ABSTRACT

The development of cell culture models that recapitulate the etiology and features of nervous system diseases is central to the discovery of new drugs and their translation onto therapies. Neuronal tissues are inaccessible due to skeletal constraints and the invasiveness of the procedure to obtain them. Thus, the emergence of induced pluripotent stem cell (iPSC) technology offers the opportunity to model different neuronal pathologies. Our focus centers on iPSCs derived from amyotrophic lateral sclerosis (ALS) patients, whose pathology remains in urgent need of new drugs and treatment. In this sense, we aim to revise the process to obtain motor neurons derived iPSCs (iPSC-MNs) from patients with ALS as a drug screening model, review current 3D-models and offer a perspective on bioinformatics as a powerful tool that can aid in the progress of finding new pharmacological treatments.

3.
J Inorg Biochem ; 237: 112012, 2022 12.
Article in English | MEDLINE | ID: mdl-36162209

ABSTRACT

A significant fraction of patients are affected by persistent fear and anxiety. Currently, there are several anxiolytic drug options, however their clinical outcomes do not fully manage the symptoms. Here, we evaluated the effects of a bromazepam­palladium derivative [2-{(7-bromo-2-oxo-1,3-dihydro-2H-1,4-benzodiazepin-5-il)pyridinyl-κ2-N,N}chloropalladium(II)], [(BMZ)PdCl2], on fear/anxiety and memory-related behavior in mice. For this, female Swiss mice were treated intraperitoneally (i.p.) with saline (NaCl 0.9%) or [(BMZ)PdCl2] (0.5, 5.0, or 50 µg/kg). After 30 min, different tests were performed to evaluate anxiety, locomotion, and memory. We also evaluated the acute toxicity of [(BMZ)PdCl2] using a cell viability assay (neutral red uptake assay), and whether the drugs mechanism of action involves the γ-aminobutyric acid type A (GABAA) receptor complex by pre-treating animals with flumazenil (1.0 mg/kg, i.p., a competitive antagonist of GABAA-binding site). Our results demonstrate that [(BMZ)PdCl2] induces an anxiolytic-like phenotype in the elevated plus-maze test and that this effect can be blocked by flumazenil. Furthermore, there were no behavioral alterations induced by [(BMZ)PdCl2], as evaluated in the light-dark box, open field, and step-down passive avoidance tests. In the acute toxicity assay, [(BMZ)PdCl2] presented IC50 and LD50 values of 218 ± 60 µg/mL and 780 ± 80 mg/kg, respectively, and GSH category 4. Taken together, our results show that the anxiolytic-like effect of acute treatment with [(BMZ)PdCl2] occurs through the modulation of the benzodiazepine site in the GABAA receptor complex. Moreover, we show indications that [(BMZ)PdCl2] does not promote sedation and amnesia and presents the same toxicity as the bromazepam prototype.


Subject(s)
Anti-Anxiety Agents , Bromazepam , Animals , Mice , Female , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Flumazenil/pharmacology , Bromazepam/pharmacology , Palladium/pharmacology , gamma-Aminobutyric Acid , Behavior, Animal , Maze Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...