Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(35): 46289-46301, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39167090

ABSTRACT

Rechargeable zinc batteries (RZBs) are highly attractive as energy storage solutions due to their low cost and sustainability. Nevertheless, the use of fluorine-free zinc electrolyte systems to create affordable, ecofriendly, and safe RZBs has been largely overlooked in the battery community. Previously, we showcased the utilization of a fluorine-free, nonaqueous electrolyte comprising zinc dicyanamide (Zn(dca)2) in dimethyl sulfoxide (DMSO) to enable the electrochemical cycling of zinc. Herein we present a dual-cation-based electrolyte, [1.0 M Na(dca) +1.0 M Zn(dca)2]/DMSO, in pursuit of a rechargeable zinc hybrid battery. Fourier-transform infrared spectroscopy and molecular dynamics simulation studies indicate that the presence of Na(dca) diminishes ion-pairing in Zn(dca)2 through [dca]- anion bridging between Zn2+ and Na+ ions, thereby enhancing Zn2+ ion transport in the electrolyte. Thus, the electrolyte exhibits high ionic conductivity and transference numbers (tZn2+) of 7.9 mS cm-1 and 0.83, respectively, at 50 °C, making it particularly suitable for high-temperature battery applications. Furthermore, we demonstrate, for the first time, the cycling of a full cell with a zinc anode and triphylite sodium iron phosphate cathode (NFP) in an organic electrolyte, showcasing stable performance over 100 cycles at 0.1C rate. These encouraging findings pave the way for affordable battery technologies using, fluorine-free electrolyte.

2.
Chem Sci ; 14(36): 9923-9932, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37736636

ABSTRACT

Magnesium-ion batteries (MIBs) are of considerable interest as environmentally more sustainable, cheaper, and safer alternatives to Li-ion systems. However, spontaneous electrolyte decomposition occurs due to the low standard reduction potential of Mg, leading to the deposition of layers known as native solid electrolyte interphases (n-SEIs). These layers may inhibit the charge transfer (electrons and ions) and, therefore, reduce the specific power and cycle life of MIBs. We propose scanning electrochemical microscopy (SECM) as a microelectrochemical tool to locally quantify the electronic properties of n-SEIs for MIBs. These interphases are spontaneously formed upon contact of Mg metal disks with organoaluminate, organoborate, or bis(trifluoromethanesulfonyl)imide (TFSI)-based electrolyte solutions. Our results unveil increased local electronic and global ionic insulating properties of the n-SEI formed when using TFSI-based electrolytes, whereas a low electronically protecting character is observed with the organoaluminate solution, and the organoborate solution being in between them. Moreover, ex situ morphological and chemical characterization was performed on the Mg samples to support the results obtained by the SECM measurements. Differences in the electronic and ionic conductivities of n-SEIs perfectly correlate with their chemical compositions.

3.
Small ; 18(33): e2202861, 2022 08.
Article in English | MEDLINE | ID: mdl-35766308

ABSTRACT

Reversible multielectron-transfer materials are of considerable interest because of the potential impact to advance present electrochemical energy storage technology by boosting energy density. To date, a few oxide-based materials can reach an electron-transfer number per metal-cation (eM ) larger than 2 upon a (de)intercalation mechanism. However, these materials suffer from degradation due to irreversible rearrangements of the cation-oxygen bonds, and are based on precious metals, for example, Ir and Ru. Hence, a design of the non-oxide-based reversible multielectron-transfer materials with abundant elements can provide a promising alternative. Herein, it is demonstrated that the bis(diimino)copper framework can show eM  = 3.5 with cation/anion co-redox mechanism together with a dual-ion mechanism. In this study, the role of the cation-anion interactions is unveiled by using an experiment/theory collaboration applied to a series of the model non-oxide abundant electrode systems based on different metal-nitrogen bonds. These models provide designer multielectron-transfer due to the tunable π-d conjugated electronic structures. It is found that the Cu-nitrogen bonds show a unique reversible rearrangement upon Li-intercalation, and this process responds to acquire a significant reversible multielectron-transfer. This work provides new insights into the affordable multielectron-transfer electrodes and uncovers an alternative strategy to advance the electrochemical energy storage reactions.


Subject(s)
Lithium , Metals , Copper/chemistry , Electrodes , Nitrogen
4.
ACS Appl Energy Mater ; 4(11): 12084-12090, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34841204

ABSTRACT

With the increased application of batteries in powering electric vehicles as well as potential contributions to utility-scale storage, there remains a need to identify and develop efficient and sustainable active materials for use in lithium (Li)- and sodium (Na)-ion batteries. Organic cathode materials provide a desirable alternative to inorganic counterparts, which often come with harmful environmental impact and supply chain uncertainties. Organic materials afford a sustainable route to active electrodes that also enable fine-tuning of electrochemical potentials through structural design. Here, we report a bis-anthraquinone-functionalized s-indacene-1,3,5,7(2H,6H)-tetraone (BAQIT) synthesized using a facile and inexpensive route as a high-capacity cathode material for use in Li- and Na-ion batteries. BAQIT provides multiple binding sites for Li- and Na-ions, while maintaining low solubility in commercial organic electrolytes. Electrochemical Li-ion cells demonstrate excellent stability with discharge capacities above 190 mAh g-1 after 300 cycles at a 0.1C rate. The material also displayed excellent high-rate performance with a reversible capacity of 142 mAh g-1 achieved at a 10C rate. This material affords high power capabilities superior to current state-of-the-art organic cathode materials, with values reaching 5.09 kW kg-1. The Na-ion performance was also evaluated, exhibiting reversible capacities of 130 mAh g-1 after 90 cycles at a 0.1C rate. This work offers a structural design to encourage versatile, high-power, and long cycle-life electrochemical energy-storage materials.

5.
Nat Commun ; 11(1): 6392, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33319782

ABSTRACT

Solid-state batteries are a proposed route to safely achieving high energy densities, yet this architecture faces challenges arising from interfacial issues between the electrode and solid electrolyte. Here we develop a novel family of double perovskites, Li1.5La1.5MO6 (M = W6+, Te6+), where an uncommon lithium-ion distribution enables macroscopic ion diffusion and tailored design of the composition allows us to switch functionality to either a negative electrode or a solid electrolyte. Introduction of tungsten allows reversible lithium-ion intercalation below 1 V, enabling application as an anode (initial specific capacity >200 mAh g-1 with remarkably low volume change of ∼0.2%). By contrast, substitution of tungsten with tellurium induces redox stability, directing the functionality of the perovskite towards a solid-state electrolyte with electrochemical stability up to 5 V and a low activation energy barrier (<0.2 eV) for microscopic lithium-ion diffusion. Characterisation across multiple length- and time-scales allows interrogation of the structure-property relationships in these materials and preliminary examination of a solid-state cell employing both compositions suggests lattice-matching avenues show promise for all-solid-state batteries.

6.
ACS Appl Energy Mater ; 3(9): 8302-8308, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33015587

ABSTRACT

Organic-based electrodes for Li- and Na-ion batteries present attractive alternatives to commonly applied inorganic counterparts which can often carry with them supply-chain risks, safety concerns with thermal runaway, and adverse environmental impact. The ability to chemically direct the structure of organic electrodes through control over functional groups is of particular importance, as this provides a route to fine-tune electrochemical performance parameters. Here, we report two benzo-dipteridine derivatives, BF-Me2 and BF-H2 , as high-capacity electrodes for use in Li- and Na-ion batteries. These moieties permit binding of multiple Li-ions per molecule while simultaneously ensuring low solubility in the supporting electrolyte, often a precluding issue with organic electrodes. Both display excellent electrochemical stability, with discharge capacities of 142 and 182 mAh g-1 after 100 cycles at a C/10 rate and Coulombic efficiencies of 96% and ∼ 100% demonstrated for BF-Me2 and BF-H2 , respectively. The application of a Na-ion cell has also been demonstrated, showing discharge capacities of 88.8 and 137 mAh g-1 after 100 cycles at a C/2 rate for BF-Me2 and BF-H2 , respectively. This work provides an encouraging precedent for these and related structures to provide versatile, high-energy density, and long cycle-life electrochemical energy storage materials.

7.
Chem Commun (Camb) ; 54(72): 10040-10043, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30073221

ABSTRACT

Increasing demand for lithium batteries for automotive applications, coupled with the necessity to move to large-scale energy storage systems, is driving a push towards new technologies and has seen Na-ion batteries emerge as a leading alternative to Li-ion. Amongst these, all solid-state configurations represent a promising route to achieving higher energy densities and increased safety. Remaining challenges include the need for Na+ solid electrolytes with the requisite ionic conductivities crucial for use in a solid-state cell. Here, we present the novel Na-rich double perovskite, Na1.5La1.5TeO6. The transport properties, explored at the macroscopic and local level, reveal a low activation energy barrier for Na+ diffusion and great promise for use as an electrolyte for all solid-state Na-batteries.

8.
Chemistry ; 22(14): 4843-54, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26916525

ABSTRACT

By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali-metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2 MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [{KMn(CH2SiMe3)3 ⋅C6 H6}2] (2) and [{NaMn(CH2SiMe3)3}2 (dioxane)7] (5); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}∞] (1) and [{Na2Mn2 (CH2SiMe3)6 (DABCO)2}∞] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6K2Mn2 (CH2SiMe3)4(O(CH2)2OCH=CH2)2}∞] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways.

SELECTION OF CITATIONS
SEARCH DETAIL