Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 39250, 2016 12 21.
Article in English | MEDLINE | ID: mdl-28000705

ABSTRACT

In vivo antigen targeting to dendritic cells (DCs) has been used as a way to improve immune responses. Targeting is accomplished with the use of monoclonal antibodies (mAbs) to receptors present on the DC surface fused with the antigen of interest. An anti-DEC205 mAb has been successfully used to target antigens to the DEC205+CD8α+ DC subset. The administration of low doses of the hybrid mAb together with DC maturation stimuli is able to activate specific T cells and induce production of high antibody titres for a number of different antigens. However, it is still not known if this approach would work with any fused protein. Here we genetically fused the αDEC205 mAb with two fragments (42-kDa and 19-kDa) derived from the ~200 kDa Plasmodium vivax merozoite surface protein 1 (MSP1), known as MSP142 and MSP119, respectively. The administration of two doses of αDEC-MSP142, but not of αDEC-MSP119 mAb, together with an adjuvant to two mouse strains induced high anti-MSP119 antibody titres that were dependent on CD4+ T cells elicited by peptides present in the MSP133 sequence, indicating that the presence of T cell epitopes in antigens targeted to DEC205+ DCs increases antibody responses.


Subject(s)
Antibody Formation/physiology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , Lectins, C-Type/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , CD4 Antigens/deficiency , CD4 Antigens/genetics , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation , Dendritic Cells/cytology , Dendritic Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/metabolism , Female , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Interferon-gamma/metabolism , Interleukin-2/metabolism , Merozoite Surface Protein 1/chemistry , Merozoite Surface Protein 1/genetics , Merozoite Surface Protein 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/immunology , Spleen/cytology , Spleen/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
J Immunol Res ; 2016: 2926436, 2016.
Article in English | MEDLINE | ID: mdl-27110574

ABSTRACT

Dendritic cells (DCs) play a central role in the initiation of adaptive immune responses, efficiently presenting antigens to T cells. This ability relies on the presence of numerous surface and intracellular receptors capable of sensing microbial components as well as inflammation and on a very efficient machinery for antigen presentation. In this way, DCs sense the presence of a myriad of pathogens, including Plasmodium spp., the causative agent of malaria. Despite many efforts to control this infection, malaria is still responsible for high rates of morbidity and mortality. Different groups have shown that DCs act during Plasmodium infection, and data suggest that the phenotypically distinct DCs subsets are key factors in the regulation of immunity during infection. In this review, we will discuss the importance of DCs for the induction of immunity against the different stages of Plasmodium, the outcomes of DCs activation, and also what is currently known about Plasmodium components that trigger such activation.


Subject(s)
Dendritic Cells/immunology , Malaria/immunology , Antigen Presentation , Humans , Immunologic Tests , Life Cycle Stages , Malaria/parasitology , Plasmodium/growth & development , Plasmodium/immunology , T-Lymphocytes/immunology
3.
PLoS One ; 10(2): e0117778, 2015.
Article in English | MEDLINE | ID: mdl-25679777

ABSTRACT

Targeting antigens to dendritic cells (DCs) by using hybrid monoclonal antibodies (mAbs) directed against DC receptors is known to improve activation and support long-lasting T cell responses. In the present work, we used the mAb αDEC205 fused to the Trypanosoma cruzi amastigote surface protein 2 (ASP-2) to identify a region of this protein recognized by specific T cells. The hybrid αDEC-ASP2 mAb was successfully generated and preserved its ability to bind the DEC205 receptor. Immunization of BALB/c mice with the recombinant mAb in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)) specifically enhanced the number of IFN-γ producing cells and CD4+ T cell proliferation when compared to mice immunized with a mAb without receptor affinity or with the non-targeted ASP-2 protein. The strong immune response induced in mice immunized with the hybrid αDEC-ASP2 mAb allowed us to identify an ASP-2-specific CD4+ T cell epitope recognized by the BALB/c MHCII haplotype. We conclude that targeting parasite antigens to DCs is a useful strategy to enhance T cell mediated immune responses facilitating the identification of new T-cell epitopes.


Subject(s)
Antigens, Protozoan/immunology , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , Immunodominant Epitopes/immunology , Trypanosoma cruzi/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibody Formation , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , CD4-Positive T-Lymphocytes/metabolism , Chagas Disease/immunology , Chagas Disease/metabolism , Dendritic Cells/metabolism , Disease Models, Animal , Female , HEK293 Cells , Humans , Immunization , Mice , Neuraminidase/genetics , Neuraminidase/immunology , Peptides/immunology , Protein Binding/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism
4.
PLoS Negl Trop Dis ; 7(7): e2330, 2013.
Article in English | MEDLINE | ID: mdl-23875054

ABSTRACT

Dengue is the most prevalent arboviral infection, affecting millions of people every year. Attempts to control such infection are being made, and the development of a vaccine is a World Health Organization priority. Among the proteins being tested as vaccine candidates in preclinical settings is the non-structural protein 1 (NS1). In the present study, we tested the immune responses generated by targeting the NS1 protein to two different dendritic cell populations. Dendritic cells (DCs) are important antigen presenting cells, and targeting proteins to maturing DCs has proved to be an efficient means of immunization. Antigen targeting is accomplished by the use of a monoclonal antibody (mAb) directed against a DC cell surface receptor fused to the protein of interest. We used two mAbs (αDEC205 and αDCIR2) to target two distinct DC populations, expressing either DEC205 or DCIR2 endocytic receptors, respectively, in mice. The fusion mAbs were successfully produced, bound to their respective receptors, and were used to immunize BALB/c mice in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)), as a DC maturation stimulus. We observed induction of strong anti-NS1 antibody responses and similar antigen binding affinity irrespectively of the DC population targeted. Nevertheless, the IgG1/IgG2a ratios were different between mouse groups immunized with αDEC-NS1 and αDCIR2-NS1 mAbs. When we tested the induction of cellular immune responses, the number of IFN-γ producing cells was higher in αDEC-NS1 immunized animals. In addition, mice immunized with the αDEC-NS1 mAb were significantly protected from a lethal intracranial challenge with the DENV2 NGC strain when compared to mice immunized with αDCIR2-NS1 mAb. Protection was partially mediated by CD4(+) and CD8(+) T cells as depletion of these populations reduced both survival and morbidity signs. We conclude that targeting the NS1 protein to the DEC205(+) DC population with poly (I:C) opens perspectives for dengue vaccine development.


Subject(s)
Dendritic Cells/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Viral Nonstructural Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dengue Vaccines/administration & dosage , Disease Models, Animal , Humans , Immunoglobulin G/blood , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Male , Mice , Mice, Inbred BALB C , Poly I-C/administration & dosage , Protein Transport , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...