Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 747, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902324

ABSTRACT

AMPK is a well-known energy sensor regulating cellular metabolism. Metabolic disorders such as obesity and diabetes are considered detrimental factors that reduce fecundity. Here, we show that pharmacologically induced in vitro activation (by metformin) or inhibition (by dorsomorphin) of the AMPK pathway inhibits or promotes activation of ovarian primordial follicles in cultured murine ovaries and human ovarian cortical chips. In mice, activation of primordial follicles in dorsomorphin in vitro-treated ovaries reduces AMPK activation and upregulates Wnt and FOXO genes, which, interestingly, is associated with decreased phosphorylation of ß-catenin. The dorsomorphin-treated ovaries remain of high quality, with no detectable difference in reactive oxygen species production, apoptosis or mitochondrial cytochrome c oxidase activity, suggesting safe activation. Subsequent maturation of in vitro-treated follicles, using a 3D alginate cell culture system, results in mature metaphase eggs with protruding polar bodies. These findings demonstrate that the AMPK pathway can safely regulate primordial follicles by modulating Wnt and FOXO genes, and reduce ß-catenin phosphorylation.


Subject(s)
AMP-Activated Protein Kinases , Ovarian Follicle , Pyrazoles , Pyrimidines , Animals , Female , Mice , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Pyrimidines/pharmacology , Pyrazoles/pharmacology , Humans , Up-Regulation/drug effects , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , beta Catenin/metabolism , beta Catenin/genetics , Phosphorylation/drug effects , Mice, Inbred C57BL , Metformin/pharmacology , Wnt Signaling Pathway/drug effects
2.
Mol Reprod Dev ; 90(6): 378-388, 2023 06.
Article in English | MEDLINE | ID: mdl-37499226

ABSTRACT

In the ovaries, cyclic adenosine 3',5'-monophosphate (cAMP) is a second messenger supporting the generation of steroids. Phosphodiesterases (PDEs) are regulators of intracellular cAMP, and therefore, potential regulators of ovarian function. Interestingly, the family of PDE genes are differentially expressed in human oocytes and granulosa cells from primordial and primary follicles, suggesting diverse roles. In this study, we addressed the functions of PDE3B and PDE8B in primordial follicle regulation using inhibitors of PDE3B and PDE8B in murine ovary primary in vitro cultures. Inhibition of PDE8B in ovarian cultures prevented primordial follicle activation, while inhibition of PDE3B had no effect on follicle distribution in the ovary, under the tested conditions. As cAMP levels may increase steroid levels, we assessed the protein levels of the steroidogenic acute regulatory protein (StAR) and aromatase enzymes, and found that inhibition of PDE3B reduced StAR protein levels, whereas inhibition of PDE8 did not alter StAR expression in our murine ovary culture system conditions. Our results showed that ketotifen-induced inhibition of PDE8B can decrease primordial follicle activation, whereas we observed no effect of follicle distribution, when PDE3B was inhibited. Expression of the StaR enzyme was not altered when PDE8B was inhibited, which might reflect not sufficient inhibition by ketotifen to induce StAR alterations, or redundant mechanisms.


Subject(s)
Ovary , Phosphoric Diester Hydrolases , Animals , Female , Humans , Mice , 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Ketotifen/metabolism , Ketotifen/pharmacology , Oocytes , Ovarian Follicle/metabolism , Ovary/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Steroids/metabolism
3.
Front Cell Dev Biol ; 9: 708076, 2021.
Article in English | MEDLINE | ID: mdl-34368158

ABSTRACT

Women with cancer and low ovarian reserves face serious challenges in infertility treatment. Ovarian tissue cryopreservation is currently used for such patients to preserve fertility. One major challenge is the activation of dormant ovarian follicles, which is hampered by our limited biological understanding of molecular determinants that activate dormant follicles and help maintain healthy follicles during growth. Here, we investigated the transcriptomes of oocytes isolated from dormant (primordial) and activated (primary) follicles under in vivo and in vitro conditions. We compared the biological relevance of the initial molecular markers of mature metaphase II (MII) oocytes developed in vivo or in vitro. The expression levels of genes involved in the cell cycle, signal transduction, and Wnt signaling were highly enriched in oocytes from primary follicles and MII oocytes. Interestingly, we detected strong downregulation of the expression of genes involved in mitochondrial and reactive oxygen species (ROS) production in oocytes from primordial follicles, in contrast to oocytes from primary follicles and MII oocytes. Our results showed a dynamic pattern in mitochondrial and ROS production-related genes, emphasizing their important role(s) in primordial follicle activation and oocyte maturation. The transcriptome of MII oocytes showed a major divergence from that of oocytes of primordial and primary follicles.

4.
J Assist Reprod Genet ; 37(6): 1355-1365, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32399794

ABSTRACT

PURPOSE: The aim of the study is to investigate presence and role of the gene encoding the maternally contributed nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD)-containing protein 9 (NLRP9) in human and mouse ovaries, respectively, and in preimplantation mouse embryo development by knocking down Nlrp9b. METHODS: Expression levels of NLRP9 mRNA in human follicles were extracted from RNA sequencing data from previous studies. In this study, we performed a qPCR analysis of Nlpr9b mRNA in mouse oocytes and found it present. Intracellular ovarian distribution of NLRP9B protein was accomplished using immunohistochemistry. The distribution of NLRP9B was explored using a reporter gene approach, fusing NLRP9B to green fluorescent protein and microinjection of in vitro-generated mRNA. Nlrp9b mRNA function was knocked down by microinjection of short interference (si) RNA targeting Nlrp9b, into mouse pronuclear zygotes. Knockdown of the Nlrp9b mRNA transcript was confirmed by qPCR. RESULT: We found that the human NLRP9 gene and its corresponding protein are highly expressed in human primordial and primary follicles. The NLRP9B protein is localized to the cytoplasm in the blastomeres of a 2-cell embryo in mice. SiRNA-mediated knockdown of Nlrp9b caused rapid elimination of endogenous Nlrp9b mRNA and premature embryo arrest at the 2- to 4-cell stages compared with that of the siRNA-scrambled control group. CONCLUSIONS: These results suggest that mouse Nlrp9b, as a maternal effect gene, could contribute to mouse preimplantation embryo development. It remains to investigate whether NLRP9 have a crucial role in human preimplantation embryo and infertility.


Subject(s)
Embryonic Development/genetics , Oocytes/growth & development , Ovarian Follicle/growth & development , Receptors, G-Protein-Coupled/genetics , Animals , Blastomeres/cytology , Blastomeres/metabolism , Cytoplasm/genetics , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental/genetics , Humans , Mice , Ovarian Follicle/metabolism , Sequence Analysis, RNA , Zygote/growth & development
5.
Hum Reprod ; 34(11): 2129-2143, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31713610

ABSTRACT

STUDY QUESTION: Does maternal smoking in early pregnancy affect metallothionein 1 and 2 (MT1 and MT2) mRNA and protein expression in first trimester placenta or embryonic/fetal liver? SUMMARY ANSWER: In the first trimester, MT protein expression is seen only in liver, where smoking is associated with a significantly reduced expression. WHAT IS KNOWN ALREADY: Zinc homeostasis is altered by smoking. Smoking induces MT in the blood of smokers properly as a result of the cadmium binding capacities of MT. In term placenta MT is present and smoking induces gene and protein expression (MT2 in particular), but the MT presence and response to smoking have never been examined in first trimester placenta or embryonic/fetal tissues. STUDY DESIGN, SIZE, DURATION: Cross sectional study where the presence of MT mRNA and protein was examined at the time of the abortion. The material was collected with informed consent after surgical intervention and frozen immediately. For protein expression analysis, liver tissue originating from smoking exposed n = 10 and unexposed n = 12 pregnancies was used. For mRNA expression analyses, placental tissue originating from smokers n = 19 and non-smokers n = 23 and fetal liver tissue from smoking exposed n = 16 and smoking unexposed pregnancies n = 13, respectively, were used. PARTICIPANTS/MATERIALS, SETTING, METHODS: Tissues were obtained from women who voluntarily and legally chose to terminate their pregnancy between gestational week 6 and 12. Western blot was used to determine the protein expression of MT, and real-time PCR was used to quantify the mRNA expression of MT2A and eight MT1 genes alongside the expression of key placental zinc transporters: zinc transporter protein-1 (ZNT1), Zrt-, Irt-related protein-8 and -14 (ZIP8 and ZIP14). MAIN RESULTS AND THE ROLE OF CHANCE: A significant reduction in the protein expression of MT1/2 in liver tissue (P = 0.023) was found by western blot using antibodies detecting both MT forms. Overall, a similar tendency was observed on the mRNA level although not statistically significant. Protein expression was not present in placenta, but the mRNA regulation suggested a down regulation of MT as well. A suggested mechanism based on the known role of MT in zinc homeostasis could be that the findings reflect reduced levels of easily accessible zinc in the blood of pregnant smokers and hence a reduced MT response in smoking exposed fetal/embryonic tissues. LIMITATIONS AND REASONS FOR CAUTION: Smoking was based on self-reports; however, our previous studies have shown high consistency regarding cotinine residues and smoking status. Passive smoking could interfere but was found mainly among smokers. The number of fetuses was limited, and other factors such as medication and alcohol might affect the findings. Information on alcohol was not consistently obtained, and we cannot exclude that it was more readily obtained from non-users. In the study, alcohol consumption was reported by a limited number (less than 1 out of 5) of women but with more smokers consuming alcohol. However, the alcohol consumption reported was typically limited to one or few times low doses. The interaction between alcohol and smoking is discussed in the paper. Notably we would have liked to measure zinc status to test our hypothesis, but maternal blood samples were not available. WIDER IMPLICATIONS OF THE FINDINGS: Zinc deficiency-in particular severe zinc deficiency-can affect pregnancy outcome and growth. Our findings indicate that zinc homeostasis is also affected in early pregnancy of smokers, and we know from pilot studies that even among women who want to keep their babies, the zinc status is low. Our findings support that zinc supplements should be considered in particular to women who smoke. STUDY FUNDING/COMPETING INTEREST(S): We thank the Department of Biomedicine for providing laboratory facilities and laboratory technicians and the Lundbeck Foundation and Læge Sofus Carl Emil Friis og Hustru Olga Doris Friis Legat for financial support. The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Liver/enzymology , Maternal Exposure , Metallothionein/metabolism , Smoking/adverse effects , Zinc/blood , Abortion, Induced , Cross-Sectional Studies , Denmark , Dietary Supplements , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Liver/embryology , Placenta/metabolism , Pregnancy , Pregnancy Trimester, First
6.
Biol Reprod ; 101(2): 284-296, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31201414

ABSTRACT

Nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD), NLRPs, are pattern recognition receptors, well recognized for their important roles in innate immunity and apoptosis. However, several NLRPs have received attention for their new, specialized roles as maternally contributed genes important in reproduction and embryo development. Several NLRPs have been shown to be specifically expressed in oocytes and preimplantation embryos. Interestingly, and in line with divergent functions, NLRP genes reveal a complex evolutionary divergence. The most pronounced difference is the human-specific NLRP7 gene, not identified in rodents. However, mouse models have been extensively used to study maternally contributed NLRPs. The NLRP2 and NLRP5 proteins are components of the subcortical maternal complex (SCMC), which was recently identified as essential for mouse preimplantation development. The SCMC integrates multiple proteins, including KHDC3L, NLRP5, TLE6, OOEP, NLRP2, and PADI6. The NLRP5 (also known as MATER) has been extensively studied. In humans, inactivating variants in specific NLRP genes in the mother are associated with distinct phenotypes in the offspring, such as biparental hydatidiform moles (BiHMs) and preterm birth. Maternal-effect recessive mutations in KHDC3L and NLRP5 (and NLRP7) are associated with reduced reproductive outcomes, BiHM, and broad multilocus imprinting perturbations. The precise mechanisms of NLRPs are unknown, but research strongly indicates their pivotal roles in the establishment of genomic imprints and post-zygotic methylation maintenance, among other processes. Challenges for the future include translations of findings from the mouse model into human contexts and implementation in therapies and clinical fertility management.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Embryonic Development/physiology , Gene Expression Regulation, Developmental/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Humans , Protein Domains
7.
J Obstet Gynaecol Res ; 44(10): 1937-1946, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30084218

ABSTRACT

AIM: To evaluate the mitochondrial DNA (mtDNA) copy number, reactive oxygen species (ROS) level and intensity of mitochondrial enzyme activity in metaphase II oocytes derived from vitrified cultured immature mouse ovarian tissue in comparison with nonvitrified group and in vivo-obtained oocytes. METHODS: Vitrified and nonvitrified ovaries from neonate female mice were cultured for 7 days. Then, preantral follicles were isolated and cultured in a three-dimensional culture system. Follicular development and oocyte maturation were evaluated and compared in both groups. Some of the collected metaphase II oocytes derived from in vitro and in vivo conditions were inseminated with capacitated spermatozoa, and then, the fertilization and embryo developmental rates were assessed. In the other series of oocytes, mtDNA copy number, distribution and enzyme activity and ROS level were analyzed. RESULTS: The embryo development, mtDNA copy number and mitochondrial enzyme activity in collected metaphase II oocytes from two in vitro-cultured groups were significantly lower, and the ROS level was higher than those of the in vivo group (P < 0.05), but there was no significant difference between vitrified and nonvitrified groups. CONCLUSION: This study showed that a two-step in vitro culture of mouse ovarian tissue decreased the mtDNA copy number and cytochrome c oxidase activity of metaphase II oocytes through an increase in their ROS level in comparison with in vivo-obtained oocytes. Thus, the in vitro culture methods should be improved.


Subject(s)
DNA, Mitochondrial/metabolism , Electron Transport Complex IV/metabolism , Embryo, Mammalian/metabolism , Oocytes/metabolism , Reactive Oxygen Species/metabolism , Animals , Animals, Newborn , Female , In Vitro Techniques , Metaphase , Mice , Vitrification
8.
Front Cell Dev Biol ; 6: 85, 2018.
Article in English | MEDLINE | ID: mdl-30148131

ABSTRACT

Bidirectional cross talk between granulosa cells and oocytes is known to be important in all stages of mammalian follicular development. Insulin-like growth factor (IGF) signaling is a prominent candidate to be involved in the activation of primordial follicles, and may be be connected to androgen-signaling. In this study, we interrogated transcriptome dynamics in granulosa cells isolated from human primordial and primary follicles to reveal information of growth factors and androgens involved in the physiology of ovarian follicular activation. Toward this, a transcriptome comparison study on primordial follicles (n = 539 follicles) and primary follicles (n = 261 follicles) donated by three women having ovarian tissue cryopreserved before chemotherapy was performed. The granulosa cell contribution in whole follicle isolates was extracted in silico. Modeling of complex biological systems was performed using IPA® software. We found the granulosa cell compartment of the human primordial and primary follicles to be extensively enriched in genes encoding IGF-related factors, and the Androgen Receptor (AR) enriched in granulosa cells of primordial follicles. Our study hints the possibility that primordial follicles may indeed be androgen responsive, and that the action of androgens represents a connection to the expression of key players in the IGF-signaling pathway including IGF1R, IGF2, and IGFBP3, and that this interaction could be important for early follicular activation. In line with this, several androgen-responsive genes were noted to be expressed in both oocytes and granulosa cells from human primordial and primary follicle. We present a detailed description of AR and IGF gene activities in the human granulosa cell compartment of primordial and primary follicles, suggesting that these cells may be or prepare to be responsive toward androgens and IGFs.

9.
Vet Res Forum ; 9(2): 145-152, 2018.
Article in English | MEDLINE | ID: mdl-30065803

ABSTRACT

The aim of this study was to evaluate the effects of ovarian tissue vitrification and two-step in vitro culture on the metaphase II (MII) oocyte reactive oxygen species (ROS) level, mitochondrial transcription factor A (TFAM) expression and succinate dehydrogenase (SDH) activity. After collection of neonatal mouse ovaries, 45 ovaries were vitrified and the others (n = 45) were considered as control. All ovaries were cultured for seven days, and their isolated preantral follicles were cultured in three-dimensional culture system. After 12 days, the follicular development and oocyte maturation were evaluated and compared in vitrified and non-vitrified ovaries. The collected MII oocytes were inseminated with capacitated spermatozoa. Then, the fertilization, embryonic development, ROS level, TFAM gene expression and SDH activity of oocytes were assessed and compared. There was no significant difference between morphology and percentage of normal follicles between vitrified and non-vitrified ovaries at the beginning of culture. The follicular development and hormone level in the vitrified group was significantly lower than non-vitrified group and the ROS concentration in the vitrified group was significantly higher than non-vitrified group after one-week culture. After follicular culture, there was no significant difference in follicular development, oocyte maturation, fertilization rate, TFAM gene expression, ROS level and mitochondrial SDH activity between the groups. This study showed that ovarian tissue vitrification influences the follicular development through increase in ROS level during culture but these harmful effects may be recovered during the follicular culture period. Thus, vitrification and ovarian culture method should be improved.

10.
J Reprod Infertil ; 18(4): 343-351, 2017.
Article in English | MEDLINE | ID: mdl-29201664

ABSTRACT

BACKGROUND: The objective of this study was determination of the changes in the reactive oxygen species (ROS) level, mitochondrial DNA (mtDNA) copy number and enzyme activity and transcription factor A (TFAM) gene expression in oocytes after vitrification. METHODS: The oocytes at metaphase II (MII) stage (n=320) were collected from super-ovulated adult female mice (n=40). These oocytes were divided into vitrified and non-vitrified groups (n=160 in each group). After vitrification of oocytes, ROS level, mtDNA copy number; TFAM gene expression and mitochondrial enzymes activity (cytochrome C oxidase and succinate dehydrogenase) were assessed and compared with non-vitrified group. Visualization of the mitochondria was done using Mitotracker green staining under confocal microscope. Data were compared by independent T-test. Values of p<0.05 were considered as statistically significant. RESULTS: The survival rate of oocytes after vitrification and warming was 96.05%. The intensity of cytochrome C oxidase activity, mtDNA copy number and TFAM gene expression in non-vitrified oocytes were significantly lower and the level of ROS was higher in vitrified oocytes in comparison with non-vitrified group (p<0.05). But the intensity of succinate dehydrogenase activity was not significantly different between the two groups. The pattern of mitochondrial distribution in two groups of study was similar but the intensity of Mitotracker green in non-vitrified oocytes was significantly higher than vitrified oocytes (p<0.05). CONCLUSION: This study showed that vitrification of mouse MII oocytes reduced the mtDNA copy number and mitochondrial cytochrome C oxidase activity by increasing ROS level, thus the subsequent embryo development may be affected.

11.
Cell J ; 19(3): 332-342, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28836396

ABSTRACT

OBJECTIVE: This study aimed to evaluate the expression of the genes related to folliculogenesis after vitrification of mouse ovarian tissues using a two-step in vitro culture. MATERIALS AND METHODS: In this experimental study, vitrified and non-vitrified ovaries from 7- day old (neonate) female mice were cultured using alpha-Minimum Essential Medium (α-MEM) supplemented with 5% fetal bovine serum (FBS) for 7 days. Morphology, surface area of ovaries and percentage of normal follicles were evaluated and compared in both groups. After one-week culture, in non-vitrified group, preantral follicles of cultured ovaries were isolated and cultured in a three-dimensional alginate culture system for 12 days. Then, the collected metaphase (M) II oocytes were inseminated with capacitated spermatozoa derived from 7-8-week old (adult) male NMRI mice. Follicular diameter, oocyte maturation, fertilization, embryo development and the expression of genes related to follicular development (Pcna, Fshr and Cyp17a1,) using real time reverse transcription-polymerase chain reaction (RT-PCR) were assessed at the end of last culture period in both groups. RESULTS: The ovarian area in vitrified group (162468.20 703.78) was less than non-vitrified group (297211.40 6671.71), while the percentage of preantral follicles in vitrified group (18.40%) was significantly lower than those of non-vitrified group (24.50%) on day 7 of culture (P>0.05). There were no significant differences between the two groups in terms of follicular diameter, expression of genes related to development of follicles, oocyte maturation, fertilization, as well as embryo development (P>0.05). CONCLUSION: The results of this study showed that vitrification of ovarian tissue following in vitro culture had negative impact on the survival and development of follicles within the tissue. However, no significant alterations were observed in development, gene expression and hormonal production of in vitro culture of isolated follicles derived from vitrified ovarian tissues as compared to the non-vitrified samples.

12.
Iran Biomed J ; 17(3): 123-8, 2013.
Article in English | MEDLINE | ID: mdl-23748889

ABSTRACT

BACKGROUND: The mitochondria are an important source of adenosine triphosphate (ATP) production in pre-implantation embryo. Therefore, the objective of this study was to investigate the effect of vitrification and in vitro culture of mouse embryos on their mitochondrial distribution and ATP content. METHODS: The embryos at 2-PN, 4-cell and blastocyst stages were collected from the oviduct of stimulated pregnant mice and uterine horns. Then, the embryos were vitrified with the cryotop method using ethylene glycol and dimethylsulphoxide. After evaluating the survival rates of vitrified embryos, their development to hatching stages were assessed. The ATP content of collected in vivo and in vitro embryos at different stages was measured by luciferin-luciferase bioluminescence assay. The distribution of mitochondria was studied using Mito-tracker green staining under a fluorescent microscope. RESULTS: The survival rates of vitrified embryos at 2-PN, 4-cell and early blastocyst stages were 84.3, 87.87 and 89.89%, respectively. The hatching rates in previous developmental stages in vitrified group were 57.44, 66.73 and 70.89% and in non-vitrified group were 66.32, 73.25 and 75.89%, respectively (P>0.05). The ATP content of in vivo or in vitro collected embryos was not significantly different in both vitrified and non-vitrified groups (P>0.05). Mitochondrial distribution of vitrified and non-vitrified 2-PN embryos was similar, but some clampings or large aggregation of mitochondria within the vitrified 4-cell embryos was prominent. CONCLUSIONS: Vitrification method did not affect the mouse embryo ATP content. Also, the cellular stress was not induced by this procedure and the safety of vitrification was shown.


Subject(s)
Adenosine Triphosphate/metabolism , Blastocyst/metabolism , Mitochondria/metabolism , Tissue Culture Techniques , Vitrification , Animals , Blastocyst/cytology , Female , Male , Mice , Microscopy, Phase-Contrast
SELECTION OF CITATIONS
SEARCH DETAIL
...