Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(25): 27085-27092, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947806

ABSTRACT

Despite a variety of glucose sensors being available today, the development of nonenzymatic devices for the determination of this biologically relevant analyte is still of particular interest in several applicative sectors. Here, we report the development of an impedimetric, enzyme-free electrochemical glucose sensor based on carbon nanofibers (CNFs) functionalized with an aromatic diamine via a simple wet chemistry functionalization. The electrochemical performance of the chemically modified carbon-based screen-printed electrodes (SPCEs) was evaluated by electrical impedance spectroscopy (EIS), demonstrating a high selectivity of the sensor for glucose with respect to other sugars, such as fructose and sucrose. The sensing parameters to obtain a reliable calibration curve and the selective glucose sensing mechanism are discussed here, highlighting the performance of this novel electrochemical sensor for the selective sensing of this important analyte. Two linear trends were noted, one at low concentrations (0-1200 µM) and the other from 1200 to 5000 µM. The limit of detection (LOD), calculated as the (standard error/slope)*3.3, was 18.64 µM. The results of this study highlight the performance of the developed novel electrochemical sensor for the selective sensing of glucose.

2.
J Am Chem Soc ; 146(26): 18061-18073, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38909313

ABSTRACT

The water hydrogen-bonded network is strongly perturbed in the first layers in contact with the semiconductor surface. Even though this aspect influences the outer-sphere electron transfer, it was not recognized that it is a crucial factor impacting the solar-driven water-splitting performances. To fill this gap, we have selected two TiO2 anatase samples (with and without B-doping), and by extensive experimental and computational investigations, we have demonstrated that the remarkable 5-fold increase in water-splitting photoactivity of the B-doped sample cannot be ascribed to effects typically associated to enhanced photocatalytic properties, such as band gap, heterojunctions, crystal facets, and other aspects. Studying these samples by combining FTIR measurements under controlled humidity with first-principles simulations sheds light on the role and nature of the first-layer water structure in contact with the photocatalyst surfaces. It turns out that the doping hampers the percolation of tetrahedrally coordinated water molecules while enhancing the population of topological H-bond defects forming approximately linear H-bonded chains. This work unveils how doping the semiconductor surface affects the local electric field, determining the water splitting rate by influencing the H-bond topologies in the first water layers. This evidence opens new prospects for designing efficient photocatalysts for water splitting.

3.
ACS Catal ; 13(9): 5876-5895, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37180964

ABSTRACT

Operando soft and hard X-ray spectroscopic techniques were used in combination with plane-wave density functional theory (DFT) simulations to rationalize the enhanced activities of Zn-containing Cu nanostructured electrocatalysts in the electrocatalytic CO2 hydrogenation reaction. We show that at a potential for CO2 hydrogenation, Zn is alloyed with Cu in the bulk of the nanoparticles with no metallic Zn segregated; at the interface, low reducible Cu(I)-O species are consumed. Additional spectroscopic features are observed, which are identified as various surface Cu(I) ligated species; these respond to the potential, revealing characteristic interfacial dynamics. Similar behavior was observed for the Fe-Cu system in its active state, confirming the general validity of this mechanism; however, the performance of this system deteriorates after successive applied cathodic potentials, as the hydrogen evolution reaction then becomes the main reaction pathway. In contrast to an active system, Cu(I)-O is now consumed at cathodic potentials and not reversibly reformed when the voltage is allowed to equilibrate at the open-circuit voltage; rather, only the oxidation to Cu(II) is observed. We show that the Cu-Zn system represents the optimal active ensembles with stabilized Cu(I)-O; DFT simulations rationalize this observation by indicating that Cu-Zn-O neighboring atoms are able to activate CO2, whereas Cu-Cu sites provide the supply of H atoms for the hydrogenation reaction. Our results demonstrate an electronic effect exerted by the heterometal, which depends on its intimate distribution within the Cu phase and confirms the general validity of these mechanistic insights for future electrocatalyst design strategies.

4.
Molecules ; 28(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37110611

ABSTRACT

Highly ordered TiO2 nanotube (NT) arrays grown on Ti mesh and Ti foil were successfully prepared by a controlled anodic oxidation process and tested for water photo-electrolysis. Electrochemical impedance spectroscopy (EIS), combined with other electrochemical techniques (cyclic voltammetry and chronoamperometry) in tests performed in the dark and under illumination conditions, was used to correlate the photoactivity to the specific charge transfer resistances associated with a 3D (mesh) or 2D (foil) geometry of the support. The peculiar structure of the nanotubes in the mesh (with better light absorption and faster electron transport along the nanotubes) strongly impacts the catalytic performances under illumination. H2 production and current density in water photo-electrolysis were over three times higher with the TiO2NTs/Ti mesh, compared to the foil in the same conditions. The results obtained by the EIS technique, used here for the first time to directly compare TiO2 nanotubes on two different supports (Ti foil and Ti mesh), led to a better understanding of the electronic properties of TiO2 nanotubes and the effect of a specific support on its photocatalytic properties.

5.
Sensors (Basel) ; 23(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37050810

ABSTRACT

In this contribution, a 25 GHz planar antenna, designed and realized in microstrip technology, is exploited as a lightweight and compact liquid sensor. The high working frequency allows minimization of the sensor dimension. Moreover, particular attention was paid to keeping the design cost low. Indeed, the frequency of 25 GHz is widely exploited for many applications, e.g., up to the last decade concerning radars and, recently, 5G technology. Available commercial antennas allowed minimization of the effort that is usually required to design the microstrip sensor. The antenna was in-house realized, and the microstrip Cu conductor was modified through controlled anodic oxidation in order to enhance the sensing features. The sensor capability of detecting the presence and concentration of ethanol in water was experimentally demonstrated. In detail, a sensitivity of 0.21 kHz/(mg/L) and an average quality factor of 117 were achieved in a very compact size, i.e., 18 mm × 19 mm, and in a cost-effective way. As a matter of fact, the availability of devices able to collect data and then to send the related information wirelessly to a remote receiver represents a key feature for the next generation of connected smart sensors.

6.
ChemSusChem ; 13(21): 5614-5619, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-32790007

ABSTRACT

Metal carbides M2 C (MXenes) with two-dimensional (2D) structure have been indicated as promising materials for N2 fixation, with the activity being related to edge planes. Here, it is instead demonstrated that the transformation from a 2D- (nanosheets) to a 3D-type nanostructure (nanoribbons) leads to a significant enhancement of the N2 fixation activity due to the formation of exposed Ti-OH sites. A linear relationship is observed between ammonia formation rate and amount of oxygen on the surface of Ti3 C2 MXene.

7.
ChemSusChem ; 12(18): 4274-4284, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31361396

ABSTRACT

Cu2 O/gas diffusion layer (GDL) electrodes prepared by electrodeposition were studied for the electrocatalytic reduction of CO2 . The designed electrode was also tested in solar-light-induced CO2 conversion in combination with a CuO/NtTiO2 photoanode using a compact photoelectrocatalytic (PEC) cell. Both PEC cell electrodes were prepared using non-critical raw materials and low cost, easily scalable procedures. In the PEC experiments, a total carbon faradaic selectivity of about 90 % to formate and about 75 % to acetate was obtained after 24 h of operations without application of potential/current or using sacrificial agents. In electrocatalytic tests of CO2 reduction at -1.5 V, the same electrode yielded high total faradaic selectivity (>95 %) but formed selectively formate (about 80 % selectivity) rather than acetate. The in situ transformation of the Cu2 O/GDL electrode leads to the formation of a hybrid Cu2 O-Cu/GDL system. Cyclic voltammetry data indicate that the potential and the presence of CO2 (not only of HCO3 - species) are both important elements in this transformation. Data also indicate that the surface concentration of CO2 (or of its products of transformation) on the electrode is an important factor to determine performance in the conversion of CO2 .

8.
Sensors (Basel) ; 18(10)2018 Oct 21.
Article in English | MEDLINE | ID: mdl-30347871

ABSTRACT

In this paper, the development of a nanoporous TiO2 array-modified Ti electrode for photo-electrochemical (PEC) sensing of dopamine (DA) is reported. A porous TiO2 array-modified electrode was fabricated from the controlled anodic oxidation of a Ti working electrode of commercial screen-printed electrodes (SPE). The anodization process and the related morphological and microstructural transformation of the bare Ti electrode into a TiO2/Ti electrode was followed by scanning electron microscopy (SEM) and UV-visible reflectance spectroscopy (DR-UV-Vis). The modified electrode was irradiated with a low-power (120 mW) UV-Vis LED lamp (λ = 400 nm) and showed good performance for the detection of DA with a large linear response range, a sensitivity of 462 nA mM-1 cm-2, and a limit of detection of 20 µM. Moreover, it showed higher photocurrents in the presence of DA in comparison to some foreign species such as ascorbic acid, uric acid, glucose, K⁺, Na⁺, and Cl-. Thus, this proposed low-cost photo-electrochemical sensor, with the advantage of very simple fabrication, demonstrates potential applications for the determination of dopamine in real samples.


Subject(s)
Dopamine/chemistry , Titanium/chemistry , Ascorbic Acid/chemistry , Carbon/chemistry , Electrochemical Techniques/methods , Electrodes , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning/methods , Oxidation-Reduction , Porosity , Uric Acid/chemistry
9.
Nat Commun ; 9(1): 935, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29507285

ABSTRACT

The carbon-carbon coupling via electrochemical reduction of carbon dioxide represents the biggest challenge for using this route as platform for chemicals synthesis. Here we show that nanostructured iron (III) oxyhydroxide on nitrogen-doped carbon enables high Faraday efficiency (97.4%) and selectivity to acetic acid (61%) at very-low potential (-0.5 V vs silver/silver chloride). Using a combination of electron microscopy, operando X-ray spectroscopy techniques and density functional theory simulations, we correlate the activity to acetic acid at this potential to the formation of nitrogen-coordinated iron (II) sites as single atoms or polyatomic species at the interface between iron oxyhydroxide and the nitrogen-doped carbon. The evolution of hydrogen is correlated to the formation of metallic iron and observed as dominant reaction path over iron oxyhydroxide on oxygen-doped carbon in the overall range of negative potential investigated, whereas over iron oxyhydroxide on nitrogen-doped carbon it becomes important only at more negative potentials.

10.
ChemSusChem ; 10(22): 4409-4419, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29121439

ABSTRACT

The future feasibility of decarbonized industrial chemical production based on the substitution of fossil feedstocks (FFs) with renewable energy (RE) sources is discussed. Indeed, the use of FFs as an energy source has the greatest impact on the greenhouse gas emissions of chemical production. This future scenario is indicated as "solar-driven" or "RE-driven" chemistry. Its possible implementation requires to go beyond the concept of solar fuels, in particular to address two key aspects: i) the use of RE-driven processes for the production of base raw materials, such as olefins, methanol, and ammonia, and ii) the development of novel RE-driven routes that simultaneously realize process and energy intensification, particularly in the direction of a significant reduction of the number of the process steps.

11.
ChemSusChem ; 10(22): 4442-4446, 2017 11 23.
Article in English | MEDLINE | ID: mdl-28921891

ABSTRACT

The addition of a CO2 -adsorption component (substituted imidazolate-based SIM-1 crystals) to a gas-diffusion layer-type catalytic electrode enhances the activity and especially the selectivity towards >C1 carbon chain products (ethanol, acetone, and isopropanol) of a Pt-based electrocatalyst that is not able to form products of CO2 reduction involving C-C bond formation under conventional (liquid-phase) conditions. This indicates that the increase of the effective CO2 concentration at the electrode active surface is the factor controlling the formation of >C1 products rather than only the intrinsic properties of the electrocatalyst.


Subject(s)
Carbon Dioxide/chemistry , Carbon/chemistry , Platinum/chemistry , 2-Propanol/chemistry , Acetone/chemistry , Adsorption , Catalysis , Diffusion , Electrochemical Techniques , Electrodes , Ethanol/chemistry , Oxidation-Reduction , Surface Properties
12.
Angew Chem Int Ed Engl ; 56(10): 2699-2703, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28128489

ABSTRACT

Ammonia is synthesized directly from water and N2 at room temperature and atmospheric pressure in a flow electrochemical cell operating in gas phase (half-cell for the NH3 synthesis). Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this half-cell. A rate of ammonia formation of 2.2×10-3  gNH3 m-2 h-1 was obtained at room temperature and atmospheric pressure in a flow of N2 , with stable behavior for at least 60 h of reaction, under an applied potential of -2.0 V. This value is higher than the rate of ammonia formation obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with a total Faraday efficiency as high as 95.1 % was obtained. Data also indicate that the active sites in NH3 electrocatalytic synthesis may be associated to specific carbon sites formed at the interface between iron particles and CNT and able to activate N2 , making it more reactive towards hydrogenation.

13.
Philos Trans A Math Phys Eng Sci ; 373(2037)2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25666059

ABSTRACT

CO(2) conversion will be at the core of the future of low-carbon chemical and energy industry. This review gives a glimpse into the possibilities in this field by discussing (i) CO(2) circular economy and its impact on the chemical and energy value chain, (ii) the role of CO(2) in a future scenario of chemical industry, (iii) new routes for CO(2) utilization, including emerging biotechnology routes, (iv) the technology roadmap for CO(2) chemical utilization, (v) the introduction of renewable energy in the chemical production chain through CO(2) utilization, and (vi) CO(2) as a suitable C-source to move to a low-carbon chemical industry, discussing in particular syngas and light olefin production from CO(2). There are thus many stimulating possibilities offered by using CO(2) and this review shows this new perspective on CO(2) at the industrial, societal and scientific levels.

SELECTION OF CITATIONS
SEARCH DETAIL