Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Angew Chem Int Ed Engl ; : e202405671, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781001

ABSTRACT

Proteoglycans (PGs), consisting of glycosaminoglycans (GAGs) linked with the core protein through a tetrasaccharide linkage region, play roles in many important biological events. The chemical synthesis of PG glycopeptides is extremely challenging. In this work, the enzymes required for synthesis of chondroitin sulfate (CS) PG (CSPG) have been expressed and the suitable sequence of enzymatic reactions has been established. To expedite CSPG synthesis, the peptide acceptor was immobilized on solid phase and the glycan units were directly installed enzymatically onto the peptide. Subsequent enzymatic chain elongation and sulfation led to the successful synthesis of CSPG glycopeptides. The CS dodecasaccharide glycopeptide was the longest homogeneous CS glycopeptide synthesized to date. The enzymatic synthesis was much more efficient than the chemical synthesis of the corresponding CS glycopeptides, which could reduce the total number of synthetic steps by 80%. The structures of the CS glycopeptides were confirmed by mass spectrometry analysis and NMR studies. In addition, the interactions between the CS glycopeptides and cathepsin G were studied. The sulfation of glycan chain was found to be important for binding with cathepsin G. This efficient chemoenzymatic strategy opens new avenues to investigate the structures and functions of PGs.

2.
J Biomol NMR ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407675

ABSTRACT

A large proportion of human proteins contain post-translational modifications that cannot be synthesized by prokaryotes. Thus, mammalian expression systems are often employed to characterize structure/function relationships using NMR spectroscopy. Here we define the selective isotope labeling of secreted, post-translationally modified proteins using human embryonic kidney (HEK)293 cells. We determined that alpha-[15N]- atoms from 10 amino acids experience minimal metabolic scrambling (C, F, H, K, M, N, R, T, W, Y). Two more interconvert to each other (G, S). Six others experience significant scrambling (A, D, E, I, L, V). We also demonstrate that tuning culture conditions suppressed V and I scrambling. These results define expectations for 15N-labeling in HEK293 cells.

3.
J Biomol NMR ; 78(1): 9-18, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37989910

ABSTRACT

Despite the prevalence and importance of glycoproteins in human biology, methods for isotope labeling suffer significant limitations. Common prokaryotic platforms do not produce mammalian post-translation modifications that are essential to the function of many human glycoproteins, including immunoglobulin G1 (IgG1). Mammalian expression systems require complex media and thus introduce significant costs to achieve uniform labeling. Expression with Pichia is available, though expertise and equipment requirements surpass E. coli culture. We developed a system utilizing Saccharomyces cerevisiae, [13C]-glucose, and [15N]-ammonium chloride with complexity comparable to E. coli. Here we report two vectors for expressing the crystallizable fragment (Fc) of IgG1 for secretion into the culture medium, utilizing the ADH2 or DDI2 promoters. We also report a strategy to optimize the expression yield using orthogonal Taguchi arrays. Lastly, we developed two different media formulations, a standard medium which provides 86-92% 15N and 30% 13C incorporation into the polypeptide, or a rich medium which provides 98% 15N and 95% 13C incorporation as determined by mass spectrometry. This advance represents an expression and optimization strategy accessible to experimenters with the capability to grow and produce proteins for NMR-based experiments using E. coli.


Subject(s)
Escherichia coli , Saccharomyces cerevisiae , Animals , Humans , Nuclear Magnetic Resonance, Biomolecular/methods , Glycoproteins/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Mammals
4.
Front Mol Biosci ; 10: 1177560, 2023.
Article in English | MEDLINE | ID: mdl-37325479

ABSTRACT

Proliferative forms of glomerulonephritis are characterized by the influx of leukocytes, albuminuria, and loss of kidney function. The glomerular endothelial glycocalyx is a thick carbohydrate layer that covers the endothelium and is comprised of heparan sulfate (HS), which plays a pivotal role in glomerular inflammation by facilitating endothelial-leukocyte trafficking. We hypothesize that the exogenous glomerular glycocalyx may reduce the glomerular influx of inflammatory cells during glomerulonephritis. Indeed, administration of mouse glomerular endothelial cell (mGEnC)-derived glycocalyx constituents, or the low-molecular-weight heparin enoxaparin, reduced proteinuria in mice with experimental glomerulonephritis. Glomerular influx of granulocytes and macrophages, as well as glomerular fibrin deposition, was reduced by the administration of mGEnC-derived glycocalyx constituents, thereby explaining the improved clinical outcome. HSglx also inhibited granulocyte adhesion to human glomerular endothelial cells in vitro. Notably, a specific HSglx fraction inhibited both CD11b and L-selectin binding to activated mGEnCs. Mass spectrometry analysis of this specific fraction revealed six HS oligosaccharides, ranging from tetra- to hexasaccharides with 2-7 sulfates. In summary, we demonstrate that exogenous HSglx reduces albuminuria during glomerulonephritis, which is possibly mediated via multiple mechanisms. Our results justify the further development of structurally defined HS-based therapeutics for patients with (acute) inflammatory glomerular diseases, which may be applicable to non-renal inflammatory diseases as well.

5.
Front Mol Biosci ; 9: 930204, 2022.
Article in English | MEDLINE | ID: mdl-36438654

ABSTRACT

Untargeted metabolomics studies are unbiased but identifying the same feature across studies is complicated by environmental variation, batch effects, and instrument variability. Ideally, several studies that assay the same set of metabolic features would be used to select recurring features to pursue for identification. Here, we developed an anchored experimental design. This generalizable approach enabled us to integrate three genetic studies consisting of 14 test strains of Caenorhabditis elegans prior to the compound identification process. An anchor strain, PD1074, was included in every sample collection, resulting in a large set of biological replicates of a genetically identical strain that anchored each study. This enables us to estimate treatment effects within each batch and apply straightforward meta-analytic approaches to combine treatment effects across batches without the need for estimation of batch effects and complex normalization strategies. We collected 104 test samples for three genetic studies across six batches to produce five analytical datasets from two complementary technologies commonly used in untargeted metabolomics. Here, we use the model system C. elegans to demonstrate that an augmented design combined with experimental blocks and other metabolomic QC approaches can be used to anchor studies and enable comparisons of stable spectral features across time without the need for compound identification. This approach is generalizable to systems where the same genotype can be assayed in multiple environments and provides biologically relevant features for downstream compound identification efforts. All methods are included in the newest release of the publicly available SECIMTools based on the open-source Galaxy platform.

6.
Commun Biol ; 5(1): 1113, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266535

ABSTRACT

Methanogens and anaerobic methane-oxidizing archaea (ANME) are important players in the global carbon cycle. Methyl-coenzyme M reductase (MCR) is a key enzyme in methane metabolism, catalyzing the last step in methanogenesis and the first step in anaerobic methane oxidation. Divergent mcr and mcr-like genes have recently been identified in uncultured archaeal lineages. However, the assembly and biochemistry of MCRs from uncultured archaea remain largely unknown. Here we present an approach to study MCRs from uncultured archaea by heterologous expression in a methanogen, Methanococcus maripaludis. Promoter, operon structure, and temperature were important determinants for MCR production. Both recombinant methanococcal and ANME-2 MCR assembled with the host MCR forming hybrid complexes, whereas tested ANME-1 MCR and ethyl-coenzyme M reductase only formed homogenous complexes. Together with structural modeling, this suggests that ANME-2 and methanogen MCRs are structurally similar and their reaction directions are likely regulated by thermodynamics rather than intrinsic structural differences.


Subject(s)
Archaea , Mesna , Archaea/genetics , Archaea/metabolism , Mesna/metabolism , Oxidoreductases/metabolism , Methane/metabolism
7.
Proc Natl Acad Sci U S A ; 119(43): e2202992119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36251991

ABSTRACT

N-glycosylation is a common posttranslational modification of secreted proteins in eukaryotes. This modification targets asparagine residues within the consensus sequence, N-X-S/T. While this sequence is required for glycosylation, the initial transfer of a high-mannose glycan by oligosaccharyl transferases A or B (OST-A or OST-B) can lead to incomplete occupancy at a given site. Factors that determine the extent of transfer are not well understood, and understanding them may provide insight into the function of these important enzymes. Here, we use mass spectrometry (MS) to simultaneously measure relative occupancies for three N-glycosylation sites on the N-terminal IgV domain of the recombinant glycoprotein, hCEACAM1. We demonstrate that addition is primarily by the OST-B enzyme and propose a kinetic model of OST-B N-glycosylation. Fitting the kinetic model to the MS data yields distinct rates for glycan addition at most sites and suggests a largely stochastic initial order of glycan addition. The model also suggests that glycosylation at one site influences the efficiency of subsequent modifications at the other sites, and glycosylation at the central or N-terminal site leads to dead-end products that seldom lead to full glycosylation of all three sites. Only one path of progressive glycosylation, one initiated by glycosylation at the C-terminal site, can efficiently lead to full occupancy for all three sites. Thus, the hCEACAM1 domain provides an effective model system to study site-specific recognition of glycosylation sequons by OST-B and suggests that the order and efficiency of posttranslational glycosylation is influenced by steric cross-talk between adjoining acceptor sites.


Subject(s)
Asparagine , Hexosyltransferases , Asparagine/metabolism , Glycoproteins/metabolism , Glycosylation , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Mannose , Polysaccharides , Transferases/metabolism
8.
Sci Rep ; 12(1): 14769, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042257

ABSTRACT

Human roundabout 1 (hRobo1) is an extracellular receptor glycoprotein that plays important roles in angiogenesis, organ development, and tumor progression. Interaction between hRobo1 and heparan sulfate (HS) has been shown to be essential for its biological activity. To better understand the effect of HS binding we engineered a lanthanide-binding peptide sequence (Loop) into the Ig2 domain of hRobo1. Native mass spectrometry was used to verify that loop introduction did not inhibit HS binding or conformational changes previously suggested by gas phase ion mobility measurements. NMR experiments measuring long-range pseudocontact shifts were then performed on 13C-methyl labeled hRobo1-Ig1-2-Loop in HS-bound and unbound forms. The magnitude of most PCSs for methyl groups in the Ig1 domain increase in the bound state confirming a change in the distribution of interdomain geometries. A grid search over Ig1 orientations to optimize the fit of data to a single conformer for both forms produced two similar structures, both of which differ from existing X-ray crystal structures and structures inferred from gas-phase ion mobility measurements. The structures and degree of fit suggest that the hRobo1-Ig1-2 structure changes slightly and becomes more rigid on HS binding. This may have implications for Robo-Slit signaling.


Subject(s)
Nerve Tissue Proteins/chemistry , Receptors, Immunologic/chemistry , Heparitin Sulfate/metabolism , Humans , Magnetic Resonance Spectroscopy , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Roundabout Proteins
9.
J Biomol NMR ; 76(4): 95-105, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35802275

ABSTRACT

The predominant protein expression host for NMR spectroscopy is Escherichia coli, however, it does not synthesize appropriate post-translation modifications required for mammalian protein function and is not ideal for expressing naturally secreted proteins that occupy an oxidative environment. Mammalian expression platforms can address these limitations; however, these are not amenable to cost-effective uniform 15 N labeling resulting from highly complex growth media requirements. Yeast expression platforms combine the simplicity of bacterial expression with the capabilities of mammalian platforms, however yeasts require optimization prior to isotope labeling. Yeast expression will benefit from methods to boost protein expression levels and developing labeling conditions to facilitate growth and high isotope incorporation within the target protein. In this work, we describe a novel platform based on the yeast Saccharomyces cerevisiae that simultaneously expresses the Kar2p chaperone and protein disulfide isomerase in the ER to facilitate the expression of secreted proteins. Furthermore, we developed a growth medium for uniform 15 N labeling. We recovered 2.2 mg/L of uniformly 15 N-labeled human immunoglobulin (Ig)G1 Fc domain with 90.6% 15 N labeling. NMR spectroscopy revealed a high degree of similarity between the yeast and mammalian-expressed IgG1 Fc domains. Furthermore, we were able to map the binding interaction between IgG1 Fc and the Z domain through chemical shift perturbations. This platform represents a novel cost-effective strategy for 15 N-labeled immunoglobulin fragments.


Subject(s)
Immunoglobulin Fc Fragments , Saccharomyces cerevisiae , Animals , Escherichia coli/metabolism , Glycosylation , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Isotope Labeling/methods , Mammals/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Saccharomyces cerevisiae/metabolism
10.
Curr Res Immunol ; 3: 128-135, 2022.
Article in English | MEDLINE | ID: mdl-35712026

ABSTRACT

The antibody-binding Fc γ receptors (FcγRs) trigger life-saving immune responses and many therapeutic monoclonal antibodies require FcγR engagement for full effect. One proven strategy to improve the efficacy of antibody therapies is to increase receptor binding affinity, in particular binding to FcγRIIIa/CD16a. Currently, affinities are measured using recombinantly-expressed soluble extracellular FcγR domains and CD16a-mediated antibody-dependent immune responses are characterized using cultured cells. It is notable that CD16a is highly processed with multiple N-glycosylation sites, and preventing individual N-glycan modifications affects affinity. Furthermore, multiple groups have demonstrated that CD16a N-glycan composition is variable and composition impacts antibody binding affinity. The level of N-glycosylation at each site is not known though computational prediction indicates low to moderate potential at each site based on primary sequence (40-70%). Here we quantify occupancy of the extracellular domains using complementary mass spectrometry-based methods. All five sites of the tighter-binding CD16a V158 allotype showed 65-100% N-glycan occupancy in proteomics-based experiments. These observations were confirmed using intact protein mass spectrometry that demonstrated the predominant species corresponded to CD16a V158 with five N-glycans, with a smaller contribution from CD16a with four N-glycans. Occupancy was likewise high for the membrane-bound receptor at all detected N-glycosylation sites using CD16a purified from cultured human natural killer cells. Occupancy of the N162 site, critical for antibody binding, appeared independent of N169 occupancy based on analysis of the T171A mutant protein. The weaker-binding CD16a F158 allotype showed higher occupancy of >93% at each site.

12.
Methods Mol Biol ; 2303: 87-92, 2022.
Article in English | MEDLINE | ID: mdl-34626372

ABSTRACT

Traveling wave ion-mobility mass spectrometry (TWIMS) combined with native mass spectrometry (MS) has emerged as a powerful tool for analyzing biomolecules, including complexes of protein and heparan sulfate (HS). This technique allows determination of the stoichiometry of the protein-HS interaction and information on the overall 3D molecular envelope.


Subject(s)
Ion Mobility Spectrometry , Mass Spectrometry , Glycosaminoglycans , Proteins
13.
J Biol Chem ; 297(6): 101391, 2021 12.
Article in English | MEDLINE | ID: mdl-34762909

ABSTRACT

Placental malaria infection is mediated by the binding of the malarial VAR2CSA protein to the placental glycosaminoglycan, chondroitin sulfate. Recombinant subfragments of VAR2CSA (rVAR2) have also been shown to bind specifically and with high affinity to cancer cells and tissues, suggesting the presence of a shared type of oncofetal chondroitin sulfate (ofCS) in the placenta and in tumors. However, the exact structure of ofCS and what determines the selective tropism of VAR2CSA remains poorly understood. In this study, ofCS was purified by affinity chromatography using rVAR2 and subjected to detailed structural analysis. We found high levels of N-acetylgalactosamine 4-O-sulfation (∼80-85%) in placenta- and tumor-derived ofCS. This level of 4-O-sulfation was also found in other tissues that do not support parasite sequestration, suggesting that VAR2CSA tropism is not exclusively determined by placenta- and tumor-specific sulfation. Here, we show that both placenta and tumors contain significantly more chondroitin sulfate moieties of higher molecular weight than other tissues. In line with this, CHPF and CHPF2, which encode proteins required for chondroitin polymerization, are significantly upregulated in most cancer types. CRISPR/Cas9 targeting of CHPF and CHPF2 in tumor cells reduced the average molecular weight of cell-surface chondroitin sulfate and resulted in a marked reduction of rVAR2 binding. Finally, utilizing a cell-based glycocalyx model, we showed that rVAR2 binding correlates with the length of the chondroitin sulfate chains in the cellular glycocalyx. These data demonstrate that the total amount and cellular accessibility of chondroitin sulfate chains impact rVAR2 binding and thus malaria infection.


Subject(s)
Antigens, Protozoan/metabolism , Chondroitin Sulfates/metabolism , Glycocalyx/metabolism , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/genetics , Female , Glycocalyx/chemistry , Glycocalyx/genetics , HEK293 Cells , HeLa Cells , Humans , Malaria, Falciparum/genetics , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Placenta/metabolism , Plasmodium falciparum/genetics , Pregnancy , Protozoan Proteins/chemistry , Protozoan Proteins/genetics
14.
Anal Chem ; 93(36): 12374-12382, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34460220

ABSTRACT

Fourier transform ion cyclotron resonance (FT-ICR) and Orbitrap mass spectrometry (MS) are among the highest-performing analytical platforms used in metabolomics. Non-targeted metabolomics experiments, however, yield extremely complex datasets that make metabolite annotation very challenging and sometimes impossible. The high-resolution accurate mass measurements of the leading MS platforms greatly facilitate this process by reducing mass errors and spectral overlaps. When high resolution is combined with relative isotopic abundance (RIA) measurements, heuristic rules, and constraints during searches, the number of candidate elemental formula(s) can be significantly reduced. Here, we evaluate the performance of Orbitrap ID-X and 12T solariX FT-ICR mass spectrometers in terms of mass accuracy and RIA measurements and how these factors affect the assignment of the correct elemental formulas in the metabolite annotation pipeline. Quality of the mass measurements was evaluated under various experimental conditions (resolution: 120, 240, 500 K; automatic gain control: 5 × 104, 1 × 105, 5 × 105) for the Orbitrap MS platform. High average mass accuracy (<1 ppm for UPLC-Orbitrap MS and <0.2 ppm for direct infusion FT-ICR MS) was achieved and allowed the assignment of correct elemental formulas for over 90% (m/z 75-466) of the 104 investigated metabolites. 13C1 and 18O1 RIA measurements further improved annotation certainty by reducing the number of candidates. Overall, our study provides a systematic evaluation for two leading Fourier transform (FT)-based MS platforms utilized in metabolite annotation and provides the basis for applying these, individually or in combination, to metabolomics studies of biological systems.


Subject(s)
Cyclotrons , Metabolomics , Fourier Analysis , Ions , Mass Spectrometry
15.
J Am Soc Mass Spectrom ; 32(7): 1759-1770, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34096288

ABSTRACT

Glycosaminoglycans (GAGs) are linear polysaccharides that participate in a broad range of biological functions. Their incomplete biosynthesis pathway leads to nonuniform chains and complex mixtures. For this reason, the characterization of GAGs has been a difficult hurdle for the analytical community. Recently, ultraviolet photodissociation (UVPD) has emerged as a useful tool for determining sites of modification within a GAG chain. Here, we investigate the ability for UVPD to distinguish chondroitin sulfate epimers and the effects of UVPD experimental parameters on fragmentation efficiency. Chondroitin sulfate A (CS-A) and chondroitin sulfate B (CS-B), commonly referred to as dermatan sulfate (DS), differ only in C-5 uronic acid stereochemistry. This uronic acid difference can influence GAG-protein binding and therefore can alter the specific biological function of a GAG chain. Prior tandem mass spectrometry methods investigated for the elucidation of GAG structures also have difficulty differentiating 4-O from 6-O sulfation in chondroitin sulfate GAGs. Preliminary data using UVPD to characterize GAGs showed a promising ability to characterize 4-O sulfation in CS-A GAGs. Here, we look in depth at the capability of UVPD to distinguish chondroitin sulfate C-5 diastereomers and the role of key experimental parameters in making this distinction. Results using a 193 nm excimer laser and a 213 nm solid-state laser are compared for this study. The effect of precursor ionization state, the number of laser pulses (193 or 213 nm UVPD), and the use of the low-pressure versus high-pressure trap are investigated.

16.
Curr Protoc ; 1(4): e83, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33798269

ABSTRACT

Glycosaminoglycans (GAGs) are linear polysaccharides found in a variety of organisms. GAGs contribute to biochemical pathway regulation, cell signaling, and disease progression. GAG sequence information is imperative for determining structure-function relationships. Recent advances in electron-activation techniques paired with high-resolution mass spectrometry allow for full sequencing of GAG structures. Electron detachment dissociation (EDD) and negative electron transfer dissociation (NETD) are two electron-activation methods that have been utilized for GAG characterization. Both methods produce an abundance of informative glycosidic and cross-ring fragment ions without producing a high degree of sulfate decomposition. Here, we provide detailed protocols for using EDD and NETD to sequence GAG chains. In addition to protocols directly involving performing these MS/MS methods, protocols include sample preparation, method development, internal calibration, and data analysis. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of glycosaminoglycan samples Basic Protocol 2: FTICR method development Basic Protocol 3: Internal calibration with NaTFA Basic Protocol 4: Electron Detachment Dissociation (EDD) of GAG samples Basic Protocol 5: Negative electron transfer dissociation (NETD) of GAG samples Basic Protocol 6: Analysis of MS/MS data.


Subject(s)
Electrons , Glycosaminoglycans , Sulfates , Tandem Mass Spectrometry
17.
Mol Cell Proteomics ; 20: 100025, 2021.
Article in English | MEDLINE | ID: mdl-32938749

ABSTRACT

This review covers recent developments in glycosaminoglycan (GAG) analysis via mass spectrometry (MS). GAGs participate in a variety of biological functions, including cellular communication, wound healing, and anticoagulation, and are important targets for structural characterization. GAGs exhibit a diverse range of structural features due to the variety of O- and N-sulfation modifications and uronic acid C-5 epimerization that can occur, making their analysis a challenging target. Mass spectrometry approaches to the structure assignment of GAGs have been widely investigated, and new methodologies remain the subject of development. Advances in sample preparation, tandem MS techniques (MS/MS), online separations, and automated analysis software have advanced the field of GAG analysis. These recent developments have led to remarkable improvements in the precision and time efficiency for the structural characterization of GAGs.


Subject(s)
Glycosaminoglycans/analysis , Mass Spectrometry/methods , Animals , Humans , Software
18.
Glycobiology ; 31(4): 425-435, 2021 05 03.
Article in English | MEDLINE | ID: mdl-32902634

ABSTRACT

Preparation of samples for nuclear magnetic resonance (NMR) characterization of larger proteins requires enrichment with less abundant, NMR-active, isotopes such as 13C and 15N. This is routine for proteins that can be expressed in bacterial culture where low-cost isotopically enriched metabolic substrates can be used. However, it can be expensive for glycosylated proteins expressed in mammalian culture where more costly isotopically enriched amino acids are usually used. We describe a simple, relatively inexpensive procedure in which standard commercial media is supplemented with 13C-enriched glucose to achieve labeling of all glycans plus all alanines of the N-terminal domain of the highly glycosylated protein, CEACAM1. We demonstrate an ability to detect partially occupied N-glycan sites, sites less susceptible to processing by an endoglycosidase, and some unexpected truncation of the amino acid sequence. The labeling of both the protein (through alanines) and the glycans in a single culture requiring no additional technical expertise past standard mammalian expression requirements is anticipated to have several applications, including structural and functional screening of the many glycosylated proteins important to human health.


Subject(s)
Glucose , Glycoproteins , Animals , Carbon Isotopes , Glucose/metabolism , Glycoproteins/metabolism , Humans , Isotope Labeling/methods , Magnetic Resonance Spectroscopy , Mammals/metabolism , Nuclear Magnetic Resonance, Biomolecular
19.
J Am Soc Mass Spectrom ; 31(10): 2143-2153, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32820910

ABSTRACT

Glycosaminoglycans (GAGs) participate in a broad range of physiological processes, and their structures are of interest to researchers in structural biology and medicine. Although they are abundant in tissues and extracellular matrices, their structural heterogeneity makes them challenging analytes. Mass spectrometry, and more specifically, tandem mass spectrometry, is particularly well suited for their analysis. Many tandem mass spectrometry techniques have been examined for their suitability toward the structural characterization of GAGs. Threshold activation methods such as collision-induced dissociation (CID) produce mainly glycosidic cleavages and do not yield a broad range of structurally informative cross-ring fragments. Considerable research efforts have been directed at finding other means of dissociating gas-phase GAG ions to produce more comprehensive structural information. Here, we compare the structural information on GAGs obtained by charge-transfer dissociation (CTD) and electron detachment dissociation (EDD). EDD has previously been applied to GAGs and is known to produce both glycosidic and cross-ring cleavages in similar abundance. CTD has not previously been used to analyze GAGs but has been shown to produce abundant cross-ring cleavages and no sulfate loss when applied to another class of sulfated carbohydrates like algal polysaccharides. In contrast to EDD, which is restricted to FTICR mass spectrometers, CTD can be implemented on other platforms, such as ion trap mass spectrometers (ITMS). Here, we show the capability of CTD-ITMS to produce structurally significant details of the sites of modification in both heparan sulfate (HS) and chondroitin sulfate (CS) standards ranging in length from degree of polymerization (dp) 4 to dp6. EDD and CTD both yield more structural information than CID and yield similar fractional abundances to one another for glycosidic fragments, cross-ring fragments, and neutral losses.

20.
Carbohydr Polym ; 245: 116623, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32718661

ABSTRACT

Heparins are the most pharmaceutically important polysaccharides. These heparin-based anticoagulant/antithrombotic agents include unfractionated heparins, low molecular weight heparins (LMWHs) and ultralow molecular weight heparins (ULMWHs). Heparins exhibit their pharmacological and biological activities through interaction with heparin-binding proteins. The prototypical heparin-binding protein is antithrombin III (AT), responsible for heparin's anticoagulant/antithrombotic activity. This study describes a filter-trapping method to isolate the chains in enoxaparin, a LMWH, which bind to AT. We demonstrate this method using the ULMWH, fondaparinux, which consists of a single well defined AT binding site. The interacting chains of enoxaparin are then characterized by activity assays, top-down liquid chromatography-mass spectrometry, and capillary zone electrophoresis mass spectrometry. This filter-trapping assay is an improvement over affinity chromatography for isolating heparin chains interacting with heparin binding proteins.


Subject(s)
Antithrombin III/chemistry , Chromatography, Affinity/methods , Enoxaparin/chemistry , Fondaparinux/chemistry , Anticoagulants/chemistry , Binding Sites , Chromatography, Liquid , Electrophoresis, Capillary , Fibrinolytic Agents/chemistry , Heparin Lyase/chemistry , Humans , Mass Spectrometry , Molecular Weight , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...