Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
2.
Proc Natl Acad Sci U S A ; 119(12): e2118142119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35302887
3.
Proc Natl Acad Sci U S A ; 119(11): e2201077119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35259012
4.
Rapid Commun Mass Spectrom ; 34(22): e8905, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-32698248

ABSTRACT

RATIONALE: Nitrate is an oxyanion similar to CO3 - and thus should undergo stable N and O isotope fractionation during dissolution or precipitation. This process should dominate abiotic soil nitrate processes in hyperarid regions of Earth and possibly Mars. METHODS: The N and O isotope fractionations during the precipitation of nitrate salt from saturated solutions at ~20°C were determined by two methods: rapid precipitation by antisolvent crystallization and slow uninhibited precipitation in a desiccator. In the antisolvent crystallization procedure, increasing volumes of acetone were added to samples of saturated sodium and strontium nitrate solutions to instantaneously precipitate nitrate salt. In the slow procedure (requiring weeks), slow evaporative water loss drove the process. RESULTS: There was little difference between the two procedures. Using a Rayleigh model, the calculated N fractionation (15 εproduct-residual ) ranged from 1.69‰ to 2.77‰, whereas for O, the 18 εproduct-residual values were between 1.27‰ and 4.61‰. The N isotope fractionation between NO3 - and the metal solid is similar to that between C in dissolved CO3 -2 and carbonates. We found that O versus N isotope plots of soil nitrate in a cold/dry Antarctic chronosequence had slopes similar to those from the experiments, revealing abiotic transport. In the Atacama Desert, where the soil nitrates are a mix of biological and tropospheric nitrate, there is an inverse relationship between soil N and O isotopes. These two relationships were compared with the isotope composition of nitrate from Martian meteorite EETA79001. CONCLUSIONS: While the N and O isotope composition of the Martian nitrate is remarkably similar to that of the present Atacama Desert, the interpretation of the slope of the O versus N isotopes remains ambiguous due to the limited number of samples. Additional NO3 samples from Martian meteorites are needed to address the question of abiotic versus biotic alteration of NO3 - on Mars.

5.
Nature ; 578(7795): 425-431, 2020 02.
Article in English | MEDLINE | ID: mdl-32051592

ABSTRACT

Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems.


Subject(s)
Bacteria/virology , Bacteriophages/classification , Bacteriophages/genetics , Earth, Planet , Ecosystem , Genome, Viral/genetics , Phylogeny , Amino Acyl-tRNA Synthetases/genetics , Animals , Bacteria/genetics , Bacteriophages/isolation & purification , Bacteriophages/metabolism , Biodiversity , CRISPR-Cas Systems/genetics , Evolution, Molecular , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Viral , Host Specificity , Humans , Lakes/virology , Molecular Sequence Annotation , Oceans and Seas , Prophages/genetics , Protein Biosynthesis , RNA, Transfer/genetics , Ribosomal Proteins/genetics , Seawater/virology , Soil Microbiology , Transcription, Genetic
7.
Glob Chang Biol ; 25(2): 386-389, 2019 02.
Article in English | MEDLINE | ID: mdl-30485613

ABSTRACT

Improved soil management is increasingly pursued to ensure food security for the world's rising global population, with the ancillary benefit of storing carbon in soils to lower the threat of climate change. While all increments to soil organic matter are laudable, we suggest caution in ascribing large, potential climate change mitigation to enhanced soil management. We find that the most promising techniques, including applications of biochar and enhanced silicate weathering, collectively are not likely to balance more than 5% of annual emissions of CO2 from fossil fuel combustion.


Subject(s)
Carbon Sequestration , Climate Change , Crop Production/methods , Greenhouse Gases/analysis , Soil/chemistry , Food Supply
8.
9.
Front Microbiol ; 8: 1435, 2017.
Article in English | MEDLINE | ID: mdl-28804480

ABSTRACT

Although once thought to be devoid of biology, recent studies have identified salt deposits as oases for life in the hyperarid Atacama Desert. To examine spatial patterns of microbial species and key nutrient sources, we genomically characterized 26 salt crusts from three sites along a fog gradient. The communities are dominated by a large variety of Halobacteriales and Bacteroidetes, plus a few algal and Cyanobacterial species. CRISPR locus analysis suggests the distribution of a single Cyanobacterial population among all sites. This is in stark contrast to the extremely high sample specificity of most other community members. Only present at the highest moisture site is a genomically characterized Thermoplasmatales archaeon (Marine Group II) and six Nanohaloarchaea, one of which is represented by a complete genome. Parcubacteria (OD1) and Saccharibacteria (TM7), not previously reported from hypersaline environments, were found at low abundances. We found no indication of a N2 fixation pathway in the communities, suggesting acquisition of bioavailable nitrogen from atmospherically derived nitrate. Samples cluster by site based on bacterial and archaeal abundance patterns and photosynthetic capacity decreases with increasing distance from the ocean. We conclude that moisture level, controlled by coastal fog intensity, is the strongest driver of community membership.

10.
Nat Microbiol ; 1: 16048, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-27572647

ABSTRACT

The tree of life is one of the most important organizing principles in biology(1). Gene surveys suggest the existence of an enormous number of branches(2), but even an approximation of the full scale of the tree has remained elusive. Recent depictions of the tree of life have focused either on the nature of deep evolutionary relationships(3-5) or on the known, well-classified diversity of life with an emphasis on eukaryotes(6). These approaches overlook the dramatic change in our understanding of life's diversity resulting from genomic sampling of previously unexamined environments. New methods to generate genome sequences illuminate the identity of organisms and their metabolic capacities, placing them in community and ecosystem contexts(7,8). Here, we use new genomic data from over 1,000 uncultivated and little known organisms, together with published sequences, to infer a dramatically expanded version of the tree of life, with Bacteria, Archaea and Eukarya included. The depiction is both a global overview and a snapshot of the diversity within each major lineage. The results reveal the dominance of bacterial diversification and underline the importance of organisms lacking isolated representatives, with substantial evolution concentrated in a major radiation of such organisms. This tree highlights major lineages currently underrepresented in biogeochemical models and identifies radiations that are probably important for future evolutionary analyses.


Subject(s)
Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Eukaryota/classification , Eukaryota/genetics , Phylogeny , Biodiversity , Ecosystem , Evolution, Molecular
11.
Proc Natl Acad Sci U S A ; 113(4): 919-24, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26755592

ABSTRACT

Our understanding of climatic conditions, and therefore forcing factors, in North America during the past two glacial cycles is limited in part by the scarcity of long, well-dated, continuous paleoclimate records. Here, we present the first, to our knowledge, continuous, millennial-resolution paleoclimate proxy record derived from millimeter-thick pedogenic carbonate clast coatings (pedothems), which are widely distributed in semiarid to arid regions worldwide. Our new multiisotope pedothem record from the Wind River Basin in Wyoming confirms a previously hypothesized period of increased transport of Gulf of Mexico moisture northward into the continental interior from 70,000 to 55,000 years ago based on oxygen and carbon isotopes determined by ion microprobe and uranium isotopes and U-Th dating by laser ablation inductively coupled plasma mass spectrometry. This pronounced meridional moisture transport, which contrasts with the dominant zonal transport of Pacific moisture into the North American interior by westerly winds before and after 70,000-55,000 years ago, may have resulted from a persistent anticyclone developed above the North American ice sheet during Marine Isotope Stage 4. We conclude that pedothems, when analyzed using microanalytical techniques, can provide high-resolution paleoclimate records that may open new avenues into understanding past terrestrial climates in regions where paleoclimate records are not otherwise available. When pedothem paleoclimate records are combined with existing records they will add complimentary soil-based perspectives on paleoclimate conditions.

12.
Science ; 348(6235): 1261071, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25954014

ABSTRACT

Human security has and will continue to rely on Earth's diverse soil resources. Yet we have now exploited the planet's most productive soils. Soil erosion greatly exceeds rates of production in many agricultural regions. Nitrogen produced by fossil fuel and geological reservoirs of other fertilizers are headed toward possible scarcity, increased cost, and/or geopolitical conflict. Climate change is accelerating the microbial release of greenhouse gases from soil organic matter and will likely play a large role in our near-term climate future. In this Review, we highlight challenges facing Earth's soil resources in the coming century. The direct and indirect response of soils to past and future human activities will play a major role in human prosperity and survival.


Subject(s)
Conservation of Natural Resources , Soil , Survival , Agriculture/trends , Climate Change , Fertilizers , Food Supply , Fossil Fuels , Humans , Nitrogen
13.
Microb Ecol ; 52(3): 389-98, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16865610

ABSTRACT

The occurrence of hypolithic cyanobacteria colonizing translucent stones was quantified along the aridity gradient in the Atacama Desert in Chile, from less arid areas to the hyperarid core where photosynthetic life and thus primary production reach their limits. As mean rainfall declines from 21 to

Subject(s)
Carbon/metabolism , Cyanobacteria/physiology , Desert Climate , Photosynthesis , Rain , Soil Microbiology , Biodiversity , Chile , Environmental Monitoring , Mars
SELECTION OF CITATIONS
SEARCH DETAIL