Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 9074, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35641584

ABSTRACT

Momentous increase in the popularity of explainable machine learning models coupled with the dramatic increase in the use of synthetic data facilitates us to develop a cost-efficient machine learning model for fast intrusion detection and prevention at frontier areas using Wireless Sensor Networks (WSNs). The performance of any explainable machine learning model is driven by its hyperparameters. Several approaches have been developed and implemented successfully for optimising or tuning these hyperparameters for skillful predictions. However, the major drawback of these techniques, including the manual selection of the optimal hyperparameters, is that they depend highly on the problem and demand application-specific expertise. In this paper, we introduced Automated Machine Learning (AutoML) model to automatically select the machine learning model (among support vector regression, Gaussian process regression, binary decision tree, bagging ensemble learning, boosting ensemble learning, kernel regression, and linear regression model) and to automate the hyperparameters optimisation for accurate prediction of numbers of k-barriers for fast intrusion detection and prevention using Bayesian optimisation. To do so, we extracted four synthetic predictors, namely, area of the region, sensing range of the sensor, transmission range of the sensor, and the number of sensors using Monte Carlo simulation. We used 80% of the datasets to train the models and the remaining 20% for testing the performance of the trained model. We found that the Gaussian process regression performs prodigiously and outperforms all the other considered explainable machine learning models with correlation coefficient (R = 1), root mean square error (RMSE = 0.007), and bias = - 0.006. Further, we also tested the AutoML performance on a publicly available intrusion dataset, and we observed a similar performance. This study will help the researchers accurately predict the required number of k-barriers for fast intrusion detection and prevention.


Subject(s)
Machine Learning , Wireless Technology , Bayes Theorem , Computer Simulation , Linear Models , Normal Distribution
2.
Sensors (Basel) ; 22(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35161815

ABSTRACT

The dramatic increase in the computational facilities integrated with the explainable machine learning algorithms allows us to do fast intrusion detection and prevention at border areas using Wireless Sensor Networks (WSNs). This study proposed a novel approach to accurately predict the number of barriers required for fast intrusion detection and prevention. To do so, we extracted four features through Monte Carlo simulation: area of the Region of Interest (RoI), sensing range of the sensors, transmission range of the sensor, and the number of sensors. We evaluated feature importance and feature sensitivity to measure the relevancy and riskiness of the selected features. We applied log transformation and feature scaling on the feature set and trained the tuned Support Vector Regression (SVR) model (i.e., LT-FS-SVR model). We found that the model accurately predicts the number of barriers with a correlation coefficient (R) = 0.98, Root Mean Square Error (RMSE) = 6.47, and bias = 12.35. For a fair evaluation, we compared the performance of the proposed approach with the benchmark algorithms, namely, Gaussian Process Regression (GPR), Generalised Regression Neural Network (GRNN), Artificial Neural Network (ANN), and Random Forest (RF). We found that the proposed model outperforms all the benchmark algorithms.


Subject(s)
Algorithms , Machine Learning , Neural Networks, Computer , Normal Distribution , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...