Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 673: 228-238, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38875789

ABSTRACT

Designing cost-effective electrocatalysts for water decomposition is crucial for achieving environmental-friendly hydrogen production. A transition metal sulfide/hydroxide electrocatalyst (1T-MoS2/Ni3S2/LDH) with double heterogeneous interfaces was developed through a two-step hydrothermal assisted electrodeposition method. The presence of the two built-in electric fields not only accelerated the charge transfer at the interface, but also enhanced the adsorption of the reactants and intermediate groups, and therefore improved the reaction rate and overall catalytic performance. The results suggest that the 1T-MoS2/Ni3S2/LDH catalysts display exceptional electrocatalytic reactivity. Under alkaline conditions, the overpotential of the electrocatalyst was 187 (η50) mV for OER and 104 (η10) mV for HER. Furthermore, the two-electrode system assembled by the electrocatalyst needs only a voltage of 1.55 V to deliver a current density of 10 mA cm-2. Our result provides a simple and effective methodical approach to the design of dual heterogeneous interfacial electrocatalysts.

2.
Nanoscale ; 12(42): 21770-21779, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33095215

ABSTRACT

To improve the high reversibility of lithium-air batteries, an air electrode needs to have excellent electrochemical performance and spatial structure. Ni3S2 nanoparticles are loaded onto an N,S-doped pearl chain tube (N,S-PCT) by a method called quasi-chemical vapor deposition (Q-CVD). Additionally, N and S are doped during the synthesis process, thereby forming an ideal pipe rack-like structure. The large amount of space in the tube rack can provide sufficient storage to act as a buffer for the discharge products, and the interconnected tubes can effectively promote the dispersion of O2 and electrolyte. The addition of Ni3S2 nanoparticles effectively reduces the charge transfer resistance, thereby increasing the electron mobility of the cathode. Ni3S2@N,S-PCT cathodes effectively improve the cycling and high-rate performance of lithium-air batteries, demonstrating an ultrahigh discharge capacity of 16 733.7 mA h g-1 at a current density of 400 mA g-1 and an ultrahigh discharge capacity of 5088.1 mA h g-1 at a current density of 1000 mA g-1. When the cut-off capacity is 1000 mA h g-1, the battery with the Ni3S2@N,S-PCT-800 electrode can achieve cycling stability for 148 cycles. This research provides a new solution for the design of lithium-air batteries with high electrocatalytic performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...