Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Atherosclerosis ; 375: 21-29, 2023 06.
Article in English | MEDLINE | ID: mdl-37245423

ABSTRACT

BACKGROUND AND AIMS: Associations between CDKAL1 variants and cholesterol efflux capacity (CEC) have been reported. This study aimed to investigate the effects of Cdkal1 deficiency on high-density lipoprotein (HDL) metabolism, atherosclerosis, and related pathways. METHODS: Lipid and glucose metabolic profiles, CEC, and in vivo reverse cholesterol transport (RCT) were compared in liver-specific Alb-Cre:Cdkal1fl/fl and Cdkal1fl/fl mice. Aortic atherosclerosis was compared in Apoe-/-Alb-Cre:Cdkal1fl/fl and Apoe-/- mice fed high-fat diets. HDL subclasses and mediators of HDL metabolism from Alb-Cre:Cdkal1fl/fl mice were examined. RESULTS: HDL-cholesterol level tended to be higher in the Alb-Cre:Cdkal1fl/fl mice (p = 0.050). Glucose and other lipid profiles were similar in the two groups of mice, irrespective of diet. The mean CEC was 27% higher (p = 0.007) in the Alb-Cre:Cdkal1fl/fl mice, as were the radioactivities of bile acids (mean difference 17%; p = 0.035) and cholesterol (mean difference 42%; p = 0.036) from faeces. The radioactivity tendency was largely similar in mice fed a high-fat diet. Atherosclerotic lesion area tended to be smaller in the Apoe-/-Alb-Cre:Cdkal1fl/fl mice than in the Apoe-/- mice (p = 0.067). Cholesterol concentrations in large HDLs were higher in the Alb-Cre:Cdkal1fl/fl mice (p = 0.024), whereas in small HDLs, they were lower (p = 0.024). Endothelial lipase (mean difference 39%; p = 0.002) and hepatic lipase expression levels (mean difference 34%; p < 0.001) were reduced in the Alb-Cre:Cdkal1fl/fl mice, whereas SR-B1 expression was elevated (mean difference 35%; p = 0.007). CONCLUSIONS: The promotion of CEC and RCT in Alb-Cre:Cdkal1fl/fl mice verified the effect of CDKAL1 seen in human genetic data. These phenotypes were related to regulation of HDL catabolism. This study suggests that CDKAL1 and associated molecules could be targets for improving RCT and vascular pathology.


Subject(s)
Atherosclerosis , Lipoproteins, HDL , Humans , Mice , Animals , Lipoproteins, HDL/metabolism , Liver/metabolism , Cholesterol/metabolism , Atherosclerosis/pathology , Apolipoproteins E/genetics , Lipase , Cholesterol, HDL/metabolism , Mice, Knockout , tRNA Methyltransferases
2.
J Am Heart Assoc ; 10(5): e019060, 2021 02.
Article in English | MEDLINE | ID: mdl-33634702

ABSTRACT

Background The mechanism through which high-density lipoprotein (HDL) induces cardioprotection is not completely understood. We evaluated the correlation between cholesterol efflux capacity (CEC), a functional parameter of HDL, and coronary collateral circulation (CCC). We additionally investigated whether A1BP (apoA1-binding protein) concentration correlates with CEC and CCC. Methods and Results In this case-control study, clinical and angiographic data were collected from 226 patients (mean age, 58 years; male, 72%) with chronic total coronary occlusion. CEC was assessed using a radioisotope and J774 cells, and human A1BP concentration was measured using enzyme-linked immunosorbent assay. Differences between the good and poor CCC groups were compared, and associations between CEC, A1BP, and other variables were evaluated. Predictors of CCC were identified by multivariable logistic regression analysis. The CEC was higher in the good than in the poor CCC group (22.0±4.6% versus 20.2±4.7%; P=0.009). In multivariable analyses including age, sex, HDL-cholesterol levels, age (odds ratio [OR], 0.96; P=0.003), and CEC (OR, 1.10; P=0.004) were identified as the independent predictors of good CCC. These relationships remained significant after additional adjustment for diabetes mellitus, acute coronary syndrome, and Gensini score. The A1BP levels were not significantly correlated with CCC (300 pg/mL and 283 pg/mL in the good CCC and poor CCC groups, respectively, P=0.25) or CEC. Conclusions The relationship between higher CEC and good CCC indicates that well-functioning HDL may contribute to CCC and may be cardioprotective; this suggests that a specific function of HDL can have biological and clinical consequences.


Subject(s)
Cholesterol/blood , Collateral Circulation/physiology , Coronary Circulation/physiology , Coronary Occlusion/blood , Coronary Vessels/diagnostic imaging , Aged , Biological Transport , Biomarkers/blood , Chronic Disease , Coronary Angiography , Coronary Occlusion/diagnosis , Coronary Occlusion/physiopathology , Enzyme-Linked Immunosorbent Assay , Female , Follow-Up Studies , Humans , Male , Middle Aged , Retrospective Studies
3.
Acta Biomater ; 35: 23-31, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26883774

ABSTRACT

Although stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior and function, the use of separate substrates with different degrees of stiffness, substrates with a narrow range stiffness gradient, toxicity of residues, different surface composition, complex fabrication procedures/devices, and low cell adhesion are still considered as hurdles of conventional techniques. In this study, a cylindrical polyvinyl alcohol (PVA)/hyaluronic acid (HA) hydrogel with a wide-range stiffness gradient (between ∼20kPa and ∼200kPa) and cell adhesiveness was prepared by a liquid nitrogen (LN2)-contacting gradual freezing-thawing method that does not use any additives or specific devices to produce the stiffness gradient hydrogel. From an in vitro cell culture using the stiffness gradient PVA/HA hydrogel, it was observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve cell, ∼40kPa for muscle cell, ∼80kPa for chondrocyte, and ∼190kPa for osteoblast). The PVA/HA hydrogel with a wide range of stiffness spectrum can be a useful tool for basic studies related with the stem cell differentiation, cell reprogramming, cell migration, and tissue regeneration in terms of substrate stiffness. STATEMENT OF SIGNIFICANCE: It is postulated that the stiffness of the extracellular matrix influences cell behavior. To prove this concept, various techniques to prepare substrates with a stiffness gradient have been developed. However, the narrow ranges of stiffness gradient and complex fabrication procedures/devices are still remained as limitations. Herein, we develop a substrate (hydrogel) with a wide-range stiffness gradient using a gradual freezing-thawing method which does not need specific devices to produce a stiffness gradient hydrogel. From cell culture experiments using the hydrogel, it is observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve, ∼40kPa for muscle, ∼80kPa for cartilage, and ∼190kPa for bone in our hydrogel system).


Subject(s)
Cell Differentiation/drug effects , Hyaluronic Acid/pharmacology , Mesenchymal Stem Cells/cytology , Polyvinyl Alcohol/pharmacology , Adult , Blotting, Western , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Crystallization , DNA/metabolism , Fluorescent Antibody Technique , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Middle Aged , Real-Time Polymerase Chain Reaction
4.
J Biomater Sci Polym Ed ; 26(5): 322-37, 2015.
Article in English | MEDLINE | ID: mdl-25597228

ABSTRACT

Growth factors (GFs) (basic fibroblast growth factor (bFGF) and/or nerve growth factor (NGF))-immobilized polycaprolactone (PCL)/Pluronic F127 microspheres were prepared using an isolated particulate-melting method and the sequential binding of heparin and GFs onto the microspheres. The GFs immobilized on the microspheres were released in a sustained manner over 28 days, regardless of GF type. From the in vitro culture of muscle-derived stem cells, it was observed that the NGF-immobilized microspheres induced more neurogenic differentiation than the bFGF-immobilized microspheres, as evidenced by a quantitative real-time polymerase chain reaction using specific neurogenic markers (Nestin, GFAP, ß-tubulin, and MAP2) and Western blot (Nestin and ß-tubulin) analyses. The dual bFGF/NGF-immobilized microspheres showed better neurogenic differentiation than the microspheres immobilized with single bFGF or NGF. From the preliminary animal study, the dual bFGF/NGF-immobilized microsphere group also showed effective nerve regeneration, as evaluated by immunocytochemistry using a marker - ß-tubulin. The dual bFGF/NGF-immobilized PCL/Pluronic F127 microspheres may be a promising candidate for nerve regeneration in certain target tissues (i.e. muscles) leading to sufficient reinnervation.


Subject(s)
Drug Carriers/chemical synthesis , Fibroblast Growth Factor 2/administration & dosage , Microspheres , Nerve Growth Factor/administration & dosage , Nerve Regeneration/drug effects , Animals , Cells, Cultured , Drug Carriers/chemistry , Drug Combinations , Drug Evaluation, Preclinical , Fibroblast Growth Factor 2/pharmacokinetics , Materials Testing , Mice , Mice, Hairless , Muscle, Skeletal/drug effects , Muscle, Skeletal/innervation , Nerve Growth Factor/pharmacokinetics , Neurogenesis/drug effects , Pilot Projects , Rats
5.
Biomaterials ; 40: 51-60, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25467820

ABSTRACT

Polyvinyl alcohol (PVA) cylindrical hydrogel with a stiffness gradient was prepared using a simple liquid nitrogen (LN2)-contacting gradual freezing and thawing method in order to investigate the effects of substrate stiffness on stem cell differentiation into specific cell types. The prepared cylindrical PVA hydrogel showed a gradually increasing stiffness along the longitudinal direction from the top at approximately 1 kPa to the bottom (LN2 contacted side) at approximately 24 kPa. From the in vitro culture of bone marrow stem cells, it was observed that each soft (∼1 kPa) and stiff (∼24 kPa) hydrogel section promotes effective neurogenesis and osteogenesis of the cells, respectively, with the tendency to gradually decrease toward the opposing characteristic's side. The stiffness gradient cylindrical PVA hydrogel fabricated using this simple gradual freezing and thawing method can be a useful tool for basic studies, including the determination of optimum stiffness ranges for a variety of stem cell differentiations, as well as the investigation of cell migration in terms of substrate stiffness.


Subject(s)
Cell Differentiation , Freezing , Polyvinyl Alcohol/chemistry , Stem Cells/cytology , Adult , Blotting, Western , Calorimetry, Differential Scanning , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Compressive Strength/drug effects , Crystallization , DNA/metabolism , Fluorescent Antibody Technique , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Middle Aged , Polyvinyl Alcohol/pharmacology , Real-Time Polymerase Chain Reaction , Stem Cells/drug effects , Stem Cells/metabolism , Transition Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL