Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(18): eadg7397, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37146142

ABSTRACT

The prevalence of orthopedic implants is increasing with an aging population. These patients are vulnerable to risks from periprosthetic infections and instrument failures. Here, we present a dual-functional smart polymer foil coating compatible with commercial orthopedic implants to address both septic and aseptic failures. Its outer surface features optimum bioinspired mechano-bactericidal nanostructures, capable of killing a wide spectrum of attached pathogens through a physical process to reduce the risk of bacterial infection, without directly releasing any chemicals or harming mammalian cells. On its inner surface in contact with the implant, an array of strain gauges with multiplexing transistors, built on single-crystalline silicon nanomembranes, is incorporated to map the strain experienced by the implant with high sensitivity and spatial resolution, providing information about bone-implant biomechanics for early diagnosis to minimize the probability of catastrophic instrument failures. Their multimodal functionalities, performance, biocompatibility, and stability are authenticated in sheep posterolateral fusion model and rodent implant infection model.


Subject(s)
Anti-Infective Agents , Nanostructures , Animals , Sheep , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Prostheses and Implants/adverse effects , Bone and Bones , Nanostructures/chemistry , Mammals
3.
Proc Natl Acad Sci U S A ; 117(31): 18292-18301, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32661158

ABSTRACT

Pencils and papers are ubiquitous in our society and have been widely used for writing and drawing, because they are easy to use, low-cost, widely accessible, and disposable. However, their applications in emerging skin-interfaced health monitoring and interventions are still not well explored. Herein, we report a variety of pencil-paper-based on-skin electronic devices, including biophysical (temperature, biopotential) sensors, sweat biochemical (pH, uric acid, glucose) sensors, thermal stimulators, and humidity energy harvesters. Among these devices, pencil-drawn graphite patterns (or combined with other compounds) serve as conductive traces and sensing electrodes, and office-copy papers work as flexible supporting substrates. The enabled devices can perform real-time, continuous, and high-fidelity monitoring of a range of vital biophysical and biochemical signals from human bodies, including skin temperatures, electrocardiograms, electromyograms, alpha, beta, and theta rhythms, instantaneous heart rates, respiratory rates, and sweat pH, uric acid, and glucose, as well as deliver programmed thermal stimulations. Notably, the qualities of recorded signals are comparable to those measured with conventional methods. Moreover, humidity energy harvesters are prepared by creating a gradient distribution of oxygen-containing groups on office-copy papers between pencil-drawn electrodes. One single-unit device (0.87 cm2) can generate a sustained voltage of up to 480 mV for over 2 h from ambient humidity. Furthermore, a self-powered on-skin iontophoretic transdermal drug-delivery system is developed as an on-skin chemical intervention example. In addition, pencil-paper-based antennas, two-dimensional (2D) and three-dimensional (3D) circuits with light-emitting diodes (LEDs) and batteries, reconfigurable assembly and biodegradable electronics (based on water-soluble papers) are explored.


Subject(s)
Electronics/instrumentation , Graphite , Monitoring, Physiologic/instrumentation , Skin , Wearable Electronic Devices , Electric Power Supplies , Electrodes , Equipment Design , Humans , Paper
4.
ACS Nano ; 13(9): 10818-10825, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31469544

ABSTRACT

The synthesis of alloys with long-range atomic-scale ordering (ordered intermetallics) is an emerging field of nanochemistry. Ordered intermetallic nanoparticles are useful for a wide variety of applications such as catalysis, superconductors, and magnetic devices. However, the preparation of nanostructured ordered intermetallics is challenging in comparison to disordered alloys, hindering progress in material development. Herein, we report a process for converting colloidally synthesized ordered intermetallic PdBi2 to ordered intermetallic Pd3Bi nanoparticles under ambient conditions by electrochemical dealloying. The low melting point of PdBi2 corresponds to low vacancy formation energies, which enables the facile removal of the Bi from the surface while simultaneously enabling interdiffusion of the constituent atoms via a vacancy diffusion mechanism under ambient conditions. The resulting phase-converted ordered intermetallic Pd3Bi exhibits 11 times and 3.5 times higher mass activity and high methanol tolerance for the oxygen reduction reaction compared with Pt/C and Pd/C, respectively, which is the highest reported for a Pd-based catalyst, to the best of our knowledge. These results establish a key development in the synthesis of noble-metal-rich ordered intermetallic phases with high catalytic activity and set forth guidelines for the design of ordered intermetallic compounds under ambient conditions.

5.
J Hazard Mater ; 371: 33-41, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30844648

ABSTRACT

The removal of heavy metal ions from industrial wastewater by adsorption has been central to the environment for decades, where common adsorbent materials are often limited by poor efficiency, complex fabrication and long processing time. Porous carbon derived from biospecies holds promise to address the limitations. In this study we converted bagasse into a carbon composite having hierarchically porous structure; the composite's dispersion phases - iron oxide and manganese oxide - were synthesized by a simple one-step liquid-phase reaction method. Featuring large specific surface area of 350.8 m2 g-1, the composite demonstrated exceptional Hg (II) removal efficiency of 96.8%, adsorption rate of up to 96.8% within 150 min and adsorption capacity of 9.8 mg g-1. In comparison with other removal materials, our work is outstanding in terms of both removal efficiency and synthesis simplicity. The high efficiency is attributed to the synergy between physical adsorption referring to hierarchically porous structure and chemical adsorption relating to functional complexation processes. It provides a new avenue for the development of high-performance adsorbent materials for heavy metal removal from aqueous media.

6.
Asian Pac J Cancer Prev ; 14(10): 5895-900, 2013.
Article in English | MEDLINE | ID: mdl-24289596

ABSTRACT

Dictamnine (Dic) has the ability to exert cytotoxicity in human cervix, colon, and oral carcinoma cells and dihydroartemisinin (DHA) also has potent anticancer activity on various tumour cell lines. This report explores the molecular mechanisms by which Dic treatment and combination treatment with DHA and Dic cause apoptosis in human lung adenocarcinoma A549 cells. Dic treatment induced concentration- and time-dependent cell death. FCM analysis showed that Dic induced S phase cell cycle arrest at low concentration and cell apoptosis at high concentration in which loss of mitochondrial membrane potential (Δψmm) was not involved. In addition, inhibition of caspase-3 using the specific inhibitor, z-DQMD-fmk, did not attenuate Dic-induced apoptosis, implying that Dic-induced caspase-3-independent apoptosis. Combination treatment with DHA and Dic dramatically increased the apoptotic cell death compared to Dic alone. Interestingly, pretreatment with z-DQMD-fmk significantly attenuated DHA and Dic co-induced apoptosis, implying that caspase-3 plays an important role in Dic and DHA co-induced cell apoptosis. Collectively, we found that Dic induced S phase cell cycle arrest at low concentration and cell apoptosis at high concentration in which mitochondria and caspase were not involved and DHA enhanced Dic induced A549 cell apoptosis via a caspase-dependent pathway.


Subject(s)
Adenocarcinoma/drug therapy , Apoptosis/drug effects , Artemisinins/pharmacology , Lung Neoplasms/drug therapy , Quinolines/pharmacology , Signal Transduction/drug effects , Adenocarcinoma/metabolism , Adenocarcinoma of Lung , Caspase 3/metabolism , Cell Death/drug effects , Cell Line, Tumor , Drug Synergism , Humans , Lung Neoplasms/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , S Phase Cell Cycle Checkpoints/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...